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Abstract

Measures similar to those used in the Franel-Landau theorem are in-
troduced. These measures are relevant to the Stieltjes hypothesis.

1 Introduction

The Farey sequence Fx of order x is the ascending series of irreducible fractions
between 0 and 1 whose denominators do not exceed x. In this article, the fraction
0/1 is not considered to be in the Farey sequence. The number of fractions in Fx
is A(x) :=

∑x
i=1 φ(i) where φ is Euler’s totient function. For v = 1, 2, 3, ..., A(x)

let δv denote the amount by which the vth term of the Farey sequence differs
from v/A(x). Franel (in collaboration with Landau) [1] proved that the Riemann

hypothesis is equivalent to the statement that |δ1|+ |δ2|+ ...+ |δA(x)| = o(x
1
2+ε)

for all ε > 0 as x → ∞. The Stieltjes hypothesis states that M(x) = O(x
1
2 )

where M(x) is the Mertens function.

2 Variants of Franel’s Measure

Franel proved that 2π
∑A(x)
v=1 |δv| ≥ |M(x)| (see section 12.2 of Edwards’ [2]

book). The quantity

√
A(x)

∑A(x)
v=1 δ

2
v is used in the proof that the Riemann

hypothesis implies
∑A(x)
v=1 |δv| = o(x

1
2+ε).

√
A(x)

∑A(x)
v=1 δ

2
v is greater than or

equal to
∑A(x)
v=1 |δv| by the Schwarz inequality. For a linear least-squares fit of√

A(x)
∑A(x)
v=1 δ

2
v versus

√
x for x = 2, 3, 4, ..., 2560, p1 (the slope) equals 0.4542

with a 95% confidence interval of (0.4539, 0.4545), p2 (the y-intercept) equals
−0.4419 with a 95% confidence interval of (−0.4528, −0.4309), SSE=22.61, R-
square=0.9997, and RMSE=0.09403. (In this and similar computations, double-
precision floating-point arithmetic is used. Cumulative errors due to the large
number of adds, subtracts, and divides are assumed to have not occurred.) The
values are bounded above by a line where the slope is the same as that of the
least-squares fit and the y-intercept is 0.5 more than that of the least-squares
fit. Similarly, the values are bounded below by a parallel line where the y-
intercept is 0.5 less than that of the least-squares fit. This indicates that the
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Stieltjes hypothesis is true. For a linear least-squares fit of

√
A(x)

∑A(x)
v=1 δ

2
v

versus
√
x for x = 2, 3, 4, ..., 5128, p1 = 0.4533 with a 95% confidence interval

of (0.4531, 0.4535), p2 = −0.4045 with a 95% confidence interval of (−0.4138,
−0.3952), SSE=65.71, R-square=0.9998, and RMSE=0.1132. The values are
bounded below by a line having the same slope and a y-intercept 0.5 less than
that of the least-squares fit. Other than five x values (2803, 2804, 2806, 2810,
and 2837), the values are bounded above by a line having the same slope and a
y-intercept 0.5 more than that of the least-squares fit. A y-intercept of 0.55244
is required to bound these values. As will be shown, the quadratic nature

of the “curve” of

√
A(x)

∑A(x)
v=1 δ

2
v values is due to the last δv values (where

v = A(x)). Let rv denote the vth fraction in the Farey sequence and let
βv denote [rv] − v/A(x) where the brackets denote the fractional portion of

rv.

√
A(x)

∑A(x)
v=1 β

2
v increases almost linearly with x (the deviations from a

straight line are very small). For a linear least-squares fit of

√
A(x)

∑A(x)
v=1 β

2
v

versus x for x = 2, 3, 4, ..., 900, p1 = 0.5514 with a 95% confidence interval of
(0.5513, 0.5514), p2 = 0.4187 with a 95% confidence interval of (0.4017, 0.4357),
SSE=15.07, R-square=1, and RMSE=0.1296. For a linear least-squares fit of√
A(x)

∑A(x)
v=1 β

2
v versus x for x = 2, 3, 4, ..., 5128, p1 = 0.5513 with a 95%

confidence interval of (0.5513, 0.5513), p2 = 0.444 with a 95% confidence in-
terval of (0.4369, 0.451), SSE=84.73, R-square=1, and RMSE=0.1286. Let γv
denote rv − [2v/A(x)]. The |γv| values corresponding to the fractions symmet-
rical about the fraction 1/2 are then equal. For a linear least-squares fit of√

8
∑A(x)/2
v=1 |γv| versus x for x = 2, 3, 4, ..., 900, p1 = 0.5513 with a 95% confi-

dence interval of (0.5513, 0.5513), p2 = 0.283 with a 95% confidence of (0.2661,
0.2999), SSE=14.86, R-square=1, and RMSE=0.1287. For a linear least-squares

fit of

√
8
∑A(x)/2
v=1 |γv| versus x for x = 2, 3, 4, ..., 5128, p1 = 0.5513 with a 95%

confidence interval of (0.5513, 0.5513), p2 = 0.2728 with a 95% confidence of
(0.2657, 0.2799), SSE=85.37, R-square=1, and RMSE=0.1291. Based on this

data,

√
A(x)

∑A(x)
v=1 β

2
v is approximately equal to

√
8
∑A(x)/2
v=1 |γv|. For x > 346,√

A(x)
∑A(x)
v=1 β

2
v −

√
8
∑A(x)/2
v=1 |γv| is between 0.16 and 0.20. The smallest dif-

ference (for x = 2) is -0.5858 and the largest difference (for x = 199) is 0.2057.
The differences appear to be approaching 1

π
√
3

as x increases. Except for small

x values, the differences are less than 1
π
√
3

about as often as they are greater

than 1
π
√
3
. 8

∑A(x)/2
v=1 |γv| is also approximately equal to A(x). For x less than

or equal to 5128, 8
∑A(x)/2
v=1 |γv| − A(x) ranges from about 16 to about −24.

For x = 5128, 8
∑A(x)/2
v=1 |γv| = 7994259.2 and A(x) = 7994266. For x > 24,√

8
∑A(x)/2
v=1 |γv|−

√
A(x) is between 0.05 and −0.05. The differences appear to

be approaching 0 as x increases. For a linear least-squares fit of

√∑A(x)/2
v=1 |γv|
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versus x for x = 2, 3, 4, ..., 5128, p1 = 0.1949 with a 95% confidence interval of
(0.1949, 0.1949), p2 = 0.097 with a 95% confidence interval of (0.09452, 0.09947),
SSE=10.48, R-square=1, and RMSE=0.04523. For a linear least-squares fit of√√

(A(x)/2)
∑A(x)/2
v=1 γ2v versus x for x = 2, 3, 4, ..., 5128, p1 = 0.2095 with a

95% confidence interval of (0.2095, 0.2095), p2 = 0.1083 with a 95% confidence
interval of (0.1057, 0.111), SSE=12.14, R-square=1, and RMSE=0.04867. As

expected,

√
(A(x)/2)

∑A(x)/2
v=1 γ2v is greater than or equal to

∑A(x)/2
v=1 |γv|. For

x > 136 and x ≤ 5128,
√
A(x)

∑A(x)
v=1 δ

2 is between 0.3 and 0.4.
√
A(x)

∑A(x)
v=1 δ

2

is usually slightly less than 2
π
√
3
.
√
A(x)

∑A(x)
v=1 δ

2 is greater than or equal to
2

π
√
3

for 158 x values and the maximum difference is 0.00996847. These measures

are useful as additional evidence that
√
A(x) increases linearly.

3 The Number of Fractions in the Farey Se-
quence Before 1/4 and Between 1/4 and 1/2

Let L(x) denote
∑x
i=1bφ(i)/4)c and U(x) denote

∑x
i=1(bφ(i)/4c + d(φ(i) −

bφ(i)/4c4)/φ(i)e). (In the latter sum, bφ(i)/4c is incremented by 1 if 4 does
not divide φ(i).) L(x) is a lower bound of the number of fractions less than
1
4 in the Farey sequence Fx and U(x) is an upper bound. Similarly, L(x) is a
lower bound of the number of fractions greater than 1

4 and less than 1
2 in the

Farey sequence Fx and U(x) is an upper bound.
√
U(x)− L(x) is roughly equal

to 3
4π

∑A(x)
v=1 |δv| for x values up to about 1500 and then appears to gradually

become larger than 3
4π

∑A(x)
v=1 |δv|. For x values up to 5128,

√
U(x)− L(x) has

been confirmed to be greater than 1
2 |M(x)|. For a quadratic least-squares fit

of
√
U(x)− L(x) versus

√
x for x = 2, 3, 4, ..., 900, p1 = −0.002733 with a 95%

confidence interval of (−0.002841, −0.002625), p2 = 0.4359 with a 95% confi-
dence interval of (0.432, 0.4399), p3 = 1.292 with a 95% confidence interval of
(1.258, 1.325), SSE=6.321, R-square=0.9988, and RMSE=0.08399. As x be-
comes larger, the “curve” of U(x) − L(x) values becomes more linear. For a
quadratic least-squares fit of

√
U(x)− L(x) versus

√
x for x = 2, 3, 4, ..., 5128,

p1 = −0.0005552 with a 95% confidence interval of (−0.0005635, −0.000547),
p2 = 0.3433 with a 95% confidence interval of (0.3426, 0.344), p3 = 2.136 with
a 95% confidence interval of (2.121, 2.15), SSE=40.45, R-square=0.9997, and
RMSE=0.08884. 4 doesn’t divide φ(i) if i is a power of a prime of the form
4k + 3 or twice a power of a prime of the form 4k + 3. U(x) − L(x) then
equals 3 +

∑
blogq xc +

∑
blogq

x
2 c where the summation is over the primes

q of the form 4k + 3 that are less than or equal to x. The first Chebyshev
function ϑ(x) is defined to equal

∑
p≤x log p. The second Chebyshev func-

tion ψ(x) equals
∑
p≤xblogp xc log p. Rosser and Schoenfeld [3] proved that

ψ(x)−ϑ(x) < 1.42620x
1
2 . For a quadratic least-squares fit of ψ(x)−ϑ(x) versus√

x for x = 2, 3, 4, ..., 25000, p1 = −0.0008752 with a 95% confidence inter-
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val of (−0.000986, −0.0008543), p2 = 1.327 with a 95% confidence interval of
(1.322, 1.331), p3 = −1.865 with a 95% confidence interval of (−2.046, −1.685),
SSE=1.469+5, R-square=0.9969, and RMSE=2.424. The plot of ψ(x) − ϑ(x)
versus

√
x becomes more linear as x increases. For a quadratic least-squares fit of

ψ(x)−ϑ(x) versus
√
x for x = 2, 3, 4, ..., 75000, p1 = −0.000355 with a 95% con-

fidence interval of (−0.0003606, −0.0003493), p2 = 1.24 with a 95% confidence
interval of (1.238, 1.242), p3 = 1.127 with a 95% confidence interval of (0.9807,
1.274), SSE=8.731e+5, R-square=0.9978, and RMSE=3.412. For a quadratic
least-squares fit of

√
U(x)− L(x) versus

√
x for x = 2, 3, 4, ..., 75000, the p2

parameter equals 0.2869, giving a normalization factor of 4.322 (1.24/0.2869).
For x ≤ 75000, |(ψ(x) − ϑ(x)) − (4.322

√
U(x)− L(x) − 14.983)| < 15. For a

quadratic least-squares fit of 4.322
√
U(x)− L(x) − 14.983 versus

√
x for x =

2, 3, 4, ..., 75000, p1 = −0.0003655 with a 95% confidence interval of (−0.0003663,
−0.0003647), p2 = 1.24 with a 95% confidence interval of (1.24, 1.24), p3 = 1.123
with a 95% confidence interval of (1.102, 1.143), SSE=1.711e+4, R-square=1,
and RMSE=0.4776. These parameter values are almost equal to those of the
least-squares fit for ψ(x)− ϑ(x).

Mertens [4] proved that
∑x
i=1M(bx/ic) log i = ψ(x). For a linear least-

squares fit of ϑ(x)−
∑x
i=1(−1)i+1M(bx/ic) log i versus x for x = 2, 3, 4, ..., 2000,

p1 = 0.9707 with a 95% confidence interval of (0.9692, 0.9722), p2 = −12.86 with
a 95% confidence interval of (−13.72, −12), SSE=4.75e+4, R-square=0.9994,
and RMSE=6.903. For a linear least-squares fit of 2(M(bx/2c) log 2+M(bx/4c) log 4+
M(bx/6c) log 6+...) versus x for x = 2, 3, 4, ..., 2000, p1 = 0.9982 with a 95% con-
fidence interval of (0.9976, 0.9989), p2 = −0.6153 with a 95% confidence inter-
val of (−1.363, 0.1322), SSE=1.447e+5, R-square=0.9998, and RMSE=8.511.
The values are bounded above by a line where the slope is the same as that
of the least-squares fit and the y-intercept is 40 more than that of the least-
squares fit. Similarly, the values are bounded below by a parallel line where
the y-intercept is 40 less than that of the least-squares fit. For a linear least-
squares fit of 2(M(bx/2c) log 2 + M(bx/4c) log 4 + M(bx/6c) log 6 + ...) ver-
sus x for x = 2, 3, 4, ..., 5128, p1 = 1.0 with a 95% confidence interval of
(1.0, 1.001), p2 = −2.427 with a 95% confidence interval of (−3.267, −1.588),
SSE=1.204e+6, R-square=0.9999, and RMSE=15.33. The values are bounded
above by a line where the slope is the same as that of the least-squares fit and
the y-intercept is 80 more than that of the least-squares fit. Similarly, the values
are bounded below by a parallel line where the y-intercept is 80 less than that
of the least-squares fit. In general, n(M(bx/nc) log n+M(bx/(2n)c) log (2n) +
M(bx/(3n)c) log (3n) + ...) appears to be a step function where the width of a
step is a multiple of n.∑x

i=1M(bx/ic)d(i) log i =
∑x
i=1 log i where d(i) denotes half the number of

positive divisors of i (this can be proved rigorously). Based on empirical evi-
dence,

∑x
i=1M(bx/ic) log i is less than

∑x
i=1 log i/d(i). For a quadratic least-

squares fit of
∑x
i=1 log i/d(i) versus x for x = 2, 3, 4, ..., 1000, p1 = 0.0002933
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with a 95% confidence interval of (0.0002878, 0.0002988), p2 = 2.307 with
a 95% confidence interval of (2.301, 2.313), p3 = −37.02 with a 95% con-
fidence interval of (−38.26, −35.79), SSE=4.326e+4, R-square=0.9999, and
RMSE=6.591.

√∑x
i=1 log i/d(i) has been confirmed to be greater than |M(x)|

for x = 2, 3, 4, ..., 5128. Let e(x) denote
∑x
i=1 log i/d(i)− ϑ(x). For a quadratic

least-squares fit of e(x) versus x for x = 2, 3, 4, ..., 10000, p1=2.376e-5 with a
95% confidence interval of (2.362e-5, 2.389e-5), p2 = 1.86 with a 95% confidence
interval of (1.858, 1.861), p3 = −270 with a 95% confidence interval of (−273.1,
−266.9), SSE=2.758e+7, R-square=0.9999, and RMSE=52.53.

√
e(x) becomes

consistently greater than ψ(x)− ϑ(x) for about x > 2500.

In the proof that
∑A(x)
v=1 |δv| = o(x

1
2+ε) implies the Riemann hypothesis,

the function f(u) = e2πiu is substituted into the equation
∑A(x)
v=1 f(rv) =∑∞

k=1

∑k
j=1 f(j/k)M(x/k). The function d(φ(d)−bφ(d)/4c4)/φ(d)e/φ(d) where

d denotes the denominator of a fraction can be used to find a direct relationship
between U(x) − L(x) and the Mertens function since the sum of this func-
tion over the fractions in the Farey sequence equals U(x) − L(x). Substitut-
ing the function into the right-hand side of the above equation and using the
floor of x/k gives a useable result. Let N(x) denote −

∑x
i=1M(bx/ic)id(φ(i)−

bφ(i)/4c4)/φ(i)e/φ(i). (N(x) can be viewed as being an approximation of
U(x)− L(x) or just an ad hoc function. Since d(φ(i)− bφ(i)/4c4)/φ(i)e/φ(i) is
a rational number and M(bx/ic) is an integer, it’s not likely that −N(x) will
be a natural number. As will be shown, using the floor of x/k and substitut-
ing an integer-valued function into the above equation does give the expected
result on occasion.) For x > 80, N(x) appears to be consistently smaller than
U(x)−L(x). For x values up to 5128,

√
N(x) has been confirmed to be greater

than 1
2 |M(x)| (although

√
N(x)− 1

2 |M(x)| = 0.1662 for x = 2837). For a linear
least-squares fit of N(x) versus

√
x for x = 2, 3, 4, ..., 5128, p1 = 2.893 with a

95% confidence interval of (2.876, 2.91), p2 = −5.654 with a 95% confidence in-
terval of (−6.52, −4.789), SSE=5.675e+5, R-square=0.9555, and RMSE=10.52.

N(x) is analogous to the quantity 2π

√
A(x)

∑A(x)
v=1 δ

2
v . For a linear least-squares

fit of 2π

√
A(x)

∑A(x)
v=1 δ

2
v versus

√
x for x = 2, 3, 4, ..., 5128, p1 = 2.848 with a

95% confidence interval of (2.847, 2.849), p2 = −2.542 with a 95% confidence
interval of (−2.6, −2.483), SSE=2594, R-square=0.9998, and RMSE=0.715.

Let mx denote the number of fractions in the Farey sequence before 1
4 and

nx the number of fractions between 1
4 and 1

2 . The “curve” of mx−nx values re-
sembles that of the Mertens function in that the peaks and valleys occur roughly
at the same places and have about the same heights and depths. The following
is a partial explanation for the relationship between these two “curves”. Franel

proved that M(x) =
∑A(x)
v=1 e

2πirv . The sines cancel out and the cosines are
symmetrical about the x axis, so it is only necessary to compute the cosines
for the fractions up to 1

2 . (By Euler’s formula, eix = cos(x) + i sin(x).) Sup-

pose h
k and h′

k′ are successive fractions in a Farey sequence of order n. Let l
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denote b(n− k′)/(k′ − k)c if k′ > k, or bd(2k′ − n− 1)/(k − k′)e/2c otherwise.
If l 6= 0, the next l fractions in the Farey sequence correspond to the remain-

ing lattice points on the line through (h, k) and (h′, k′) and are h′+(h′−h)i
k′+(k′−k)i ,

i = 1, 2, 3, ..., l. This property of the Farey sequence (where the numerators
and denominators increase or decrease linearly) can be used to compute a full-
order Farey sequence by interpolating between the fractions in a half-order se-
quence (if n is odd, a half-order of (n + 1)/2 is used). The corresponding
interpolation of sums of cosines (of 2π times the fractions) is almost linear.
For example, for x = 29 (the half-order), the interpolated fractions between
7
25 and 2

7 are 16
57 , 9

32 , 11
39 , 13

46 , and 15
53 and the respective sums of cosines (start-

ing with the sum for 7
25 ) are 155.3513, 155.1596, 154.9645, 154.7645, 154.5610,

154.3551, and 154.1325. The change in the value of the Mertens function from
the half-order Farey sequence to the full-order sequence is then mostly depen-
dent on the changes in the number of fractions before 1

4 and between 1
4 and

1
2 . Let ax denote the sum of cos(2πrv) for rv up to 1

4 and let bx denote the
sum of cos(2πrv) for rv between 1

4 and 1
2 . For example, a255 = 2455.446,

m255 = 3858, b255 = −2453.946, n225 = 3854, a450 = 9807.467, m450 = 15405,
b450 = −9810.967, and n450 = 15410. Then a450(m255/m450) = 2456.164,
b450(n225/n450) = −2453.6966 and the sum of these two quantities is 2.4674,
close to the expected value of 1.5. The Mertens function can be similarly approx-
imated using third-order, fourth-order, etc. Farey sequences. Let P (x) denote
M(x) −

∑x
i=1(ax(mbx/ic/mx) + bx(nbx/ic/nx))id(φ(i) − bφ(i)/4c4)/φ(i)e/φ(i).

P (x) is analogous to the quantity N(x) − M(x). The “curve” of P (x) val-
ues has well-defined peaks and valleys that become larger and broader as x
increases (for x values less than about 400, the peaks and valleys oscillate be-
tween 0 and U(x) − L(x)). P (x) appears to be negative for only x equal to
287, 288, 289, 290, 291, 292, and 293 (the respective P (x) values are −0.6266,
−2.1199, −2.1067, −1.2984, −2.1241, −2.1239, and −1.2914). P (x) appears
to be greater than U(x) − L(x) for only x equal to 41, 94, 95, 96, 97, and 98
(the respective differences in values are −0.0199, −0.1662, −3.1855, −3.2144,
−3.9493, and −0.0486). For a quadratic least-squares fit of P (x) versus

√
x for

x = 2, 3, 4, ..., 5128, p1 = 0.02648 with a 95% confidence interval of (0.02344,
0.02952), p2 = 1.093 with a 95% confidence interval of (0.8262, 1.36), and
p3 = 6.057 with a 95% confidence interval of (0.6468, 11.47). SSE=5.506e+6,
R-square=0.754, and RMSE=32.78.

Let L(x) denote
∑x
i=1 ax(mbx/ic/mx) and R(x) denote

∑x
i=1 bx(nbx/ic/nx).

For a quadratic least-squares fit of L(x) versus x for x = 2, 3, 4, ..., 1280, p1 =
0.07958 with a 95% confidence interval of (0.07958, 0.07958), p2 = −0.318 with
a 95% confidence interval of (−0.3189, −0.3171), and p3 = −0.6552 with a
95% confidence interval of (−0.9089, −0.4014). SSE=3005, R-square=1, and
RMSE=1.535. For a quadratic least-squares fit of R(x) versus x for x =
2, 3, 4, ..., 1280, p1 = −0.07958 with a 95% confidence interval of (−0.07958,
−0.07958), p2 = 0.2144 with a 95% confidence interval of (0.2132, 0.2155), and
p3 = −0.7061 with a 95% confidence interval of (−1.034, −0.378). SSE=5026,
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R-square=1, and RMSE=1.985. For a quadratic least-squares fit of L(x) ver-
sus x for x = 2, 3, 4, ..., 101, p1 = 0.07973 with a 95% confidence interval of
(0.07962, 0.07985), p2 = −0.3372 with a 95% confidence interval of (−0.3493,
−0.325), and p3 = −0.1597 with a 95% confidence interval of (−0.4305, 0.1112).
SSE=17.81, R-square=1, and RMSE=0.4285. For a quadratic least-squares fit
of R(x) versus x for x = 2, 3, 4, ..., 101, p1 = −0.07958 with a 95% confidence
interval of (−0.07973, −0.07943), p2 = 0.2088 with a 95% confidence inter-
val of (0.1932, 0.2244), and p3 = −0.06974 with a 95% confidence interval of
(−0.418, 0.2785). SSE=29.45, R-square=1, and RMSE=0.551. L(x) and R(x)
appear to have fixed probability distributions. For quadratic least-squares fits
of L(x) versus x where x = 1000, 2000, 3000, 4000, and 5000, p1 equals 0.07958,
0.07958, 0.07958, 0.07958, and 0.07958 respectively, p2 equals −0.319, −0.3186,
−0.3172, −0.3182, and −0.3173 respectively, and p3 equals −0.4803, −0.528,
−1.012, −0.5513, and −1.186 respectively. For quadratic least-squares fits of
R(x) versus x where x = 1000, 2000, 3000, 4000, and 5000, p1 equals −0.07957,
−0.07958, −0.07958, −0.07958, and −0.07958 respectively, p2 equals 0.2086,
0.214, 0.2136, 0.211, and 0.2135 respectively, and p3 equals 0.1585, −0.8939,
−1.022, 0.1643, and −1.342 respectively. Let S(x) denote

∑x
i=1 ax(mbx/ic/mx)i

and T (x) denote
∑x
i=1 bx(nbx/ic/nx)i. For a quadratic least-squares fit of

√
S(x)

versus x for x = 2, 3, 4, ..., 1280, p1=4.404e-5 with a 95% confidence interval of
(4.335e-5, 4.474e-5), p2 = 0.4826 with a 95% confidence interval of (0.4817,
0.4835), and p3 = −9.014 with a 95% confidence interval of (−9.269, −8.759).
SSE=3031, R-square=0.9999, and RMSE=1.541. For a quadratic least-squares
fit of

√
−T (x) versus x for x = 2, 3, 4, ..., 1280, p1=4.303e-5 with a 95% con-

fidence interval of (4.236e-5, 4.371e-5), p2 = 0.4977 with a 95% confidence
interval of (0.4968, 0.4986), and p3 = −8.589 with a 95% confidence inter-
val of (−8.838, −8.34). SSE=2897, R-square=0.9999, and RMSE=1.507. The
“curves” of

√
S(x) and

√
−T (x) values become more linear as x increases. For

quadratic least-squares fits of
√
S(x) versus x where x = 1000, 2000, 3000,

4000, and 5000, p1 equals 5.738e-5, 2.729e-5, 1.768e-5, 1.3e-5, and 1.025e-5 re-
spectively, p2 equals 0.4705, 0.5039, 0.5226, 0.5355, and 0.5453 respectively,
and p3 equals −7.293, −13.32, −19.1, −24.72, and −30.24 respectively. For
quadratic least-squares fits of

√
−T (x) versus x where x = 1000, 2000, 3000,

4000, and 5000, p1 equals 5.603e-5, 2.668e-5, 1.729e-5, 1.272e-5, and 1.003e-5
respectively, p2 equals 0.486, 0.5185, 0.5368, 0.5494, and 0.559 respectively, and
p3 equals −6.913, −12.79, −18.43, −23.92, and −29.31 respectively.

In this section, a1 (equal to 0.5) and b3 (equal to −0.5) are set to 0. The
rationale for doing this is that 1

4 is not in a Farey sequence of order less than 4.
For a quadratic least-squares fit of

∑x
i=1 abx/ic versus x for x = 2, 3, 4, ..., 1280,

p1 = 0.07958 with a 95% confidence interval of (0.07958, 0.07958), p2 = −0.0426
with a 95% confidence interval of (−0.4206, −0.4206), and p3 = 0.3793 with a
95% confidence interval of (0.3768, 0.3819). SSE=0.3006, R-square=1, and
RMSE=0.1535. For a quadratic least-square fit of

∑x
i=1 bbx/ic versus x for

x = 2, 3, 4, ..., 1280, p1 = −0.07958 with a 95% confidence interval of (−0.07958,
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−0.07958), p2 = 0.2123 with a 95% confidence interval of (0.2122, 0.2124), and
p3 = 0.01705 with a 95% confidence interval of (−0.01531, 0.0494). SSE=48.87,
R-square=1, and RMSE=0.1957. For quadratic least-squares fits of

∑x
i=1 abx/ic

versus x where x = 1000, 2000, 3000, 4000, and 5000, p1 equals 0.07958,
0.07958, 0.07958, 0.07958, and 0.07958 respectively, p2 equals −0.4207, −0.4206,
−0.4205, −0.4205, and −0.4205 respectively, and p3 equals 0.3389, 0.3684,
0.3586, 0.3472, and 0.3211 respectively. For quadratic least-squares fits of∑x
i=1 bbx/ic versus x where x = 1000, 2000, 3000, 4000, and 5000, p1 equals

−0.07958, −0.07958, −0.07958, −0.07958, and −0.07958 respectively, p2 equals
0.2123, 0.2122, 0.2122, 0.2122, and 0.2121 respectively, and p3 equals 0.008158,
0.02777, 0.03777, 0.05075, and 0.05669 respectively.

∑x
i=1 abx/ic has almost the

same probability distribution as L(x) except that the p2 parameter is some-
what smaller and the p3 parameter is somewhat larger.

∑x
i=1 bbx/ic has about

the same probability distribution as R(x). For a quadratic least-squares fit

of
√∑x

i=1 abx/ici versus x for x = 2, 3, 4, ..., 1280, p1=4.482e-5 with a 95%

confidence interval of (4.411e-5, 4.553-5), p2 = 0.4729 with a 95% confidence
interval of (0.472, 0.4739), and p3 = −9.22 with a 95% confidence interval
of (−9.481, −8.959). SSE=3184, R-square=0.9999, and RMSE=1.58. For a

quadratic least-squares fit of
√
−
∑x
i=1 bbx/ici versus x for x = 2, 3, 4, ..., 1280,

p1=4.31e-5 with a 95% confidence interval of (4.242e-5, 4.378e-5), p2 = 0.4965
with a 95% confidence interval of (0.4956, 0.4974), and p3 = −8.625 with a
95% confidence interval of (−8.875, −8.375). SSE=2914, R-square=0.9999, and

RMSE=1.511. For quadratic least-squares fits of
√∑x

i=1 abx/ici versus x where

x = 1000, 2000, 3000, 4000, and 5000, p1 equals 5.847e-5, 2.772e-5, 1.794e-5,
1.318e-5, and 1.039e-5 respectively, p2 equals 0.4606, 0.4946, 0.5137, 0.5268, and
0.5368 respectively, and p3 equals −7.46, −13.61, −19.49, −25.21, and −30.82

respectively. For quadratic least-squares fits of
√
−
∑x
i=1 bbx/ici versus x where

x = 1000, 2000, 3000, 4000, and 5000, p1 equals 5.615e-5, 2.672e-5, 1.732e-5,
1.275e-5, and 1.005e-5 respectively, p2 equals 0.487, 0.5173, 0.5365, 0.5483, and
0.5579 respectively, and p3 equals −6.943, −12.83, −18.48, −23.99, and −29.39
respectively. As expected,

∑x
i=1 abx/ici has about the same distribution of val-

ues as S(x) and
∑x
i=1 bbx/ici has about the same distribution of values as T (x).

Based on empirical evidence
∑x
i=1M(bx/(in)c) = 1 for n = 1, 2, 3, ..., x

and
∑x
i=1M(bx/ic)i = A(x). (The second result follows from the first. Let

T denote the x by x matrix where element (i, j) equals φ(j) if j divides i
or 0 otherwise. Let U denote the matrix obtained from T by element-by-
element multiplication of the columns by M(bx/1c), M(bx/2c), M(bx/3c), ...,
M(bx/xc). By the first result, the sum of the columns of U equals A(x).
i =

∑
d|i φ(d), so

∑x
i=1M(bx/ic)i (the sum of the rows of U) equals A(x).

Also, the function d1/de where d denotes the denominator of a fraction can

be substituted into the equation
∑A(x)
v=1 f(rv) =

∑∞
k=1

∑k
j=1 f(j/k)M(x/k).

The first result then follows from the second if it can be shown that each
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of
∑x
i=1M(bx/(in)c), n = 1, 2, 3, ..., x, is positive. Another approach is to

use the definition of the Mertens function [M(x) =
∑x
k=1 µ(k)] to prove that∑x

i=1M(bx/ic)−
∑x−1
i=1 M(b(x−1)/ic) = 0. Let n denote the number of distinct

prime factors of x. In essence, (n0 )− (n1 ) + (n2 )− (n3 ) + ...+ (−1)n(nn) = 0 implies∑x
i=1M(bx/ic) = 1.) A(x) is approximately equal to 3x2/π2. (Mertens [5]

proved that
∑G
m=1 φ(m) = 3

π2G
2 + ∆ where |∆| < G( 1

2 logeG + 1
2C + 5

8 ) + 1

and C is Euler’s constant 0.57721....) For x > 13 and x ≤ 5128,
√√

A(x)

has been confirmed to be greater than |M(x)|. For a linear least-squares fit of√
1
2

∑x
i=1M(bx/ic)i versus x for x = 2, 3, 4, ..., 5128, p1 = 0.3898 with a 95%

confidence interval of (0.3898, 0.3898) and p2 = 0.1952 with a 95% confidence in-
terval of (0.1902, 0.2001). SSE=41.87, R-square=1, and RMSE=0.09038. The
values are bounded above by a line where the slope is the same as that of
the least-squares fit and the y-intercept is 0.5 more than that of the least-
squares fit. Similarly, the values are bounded below by a parallel line where
the y-intercept is 0.5 less than that of the least-squares fit. (If a > b > 0,√
a+b/(2

√
a) >

√
a+ b. Mertens’ result is not strong enough to guarantee that

these upper and lower bounds won’t fail for very large x due to the growth of

loge x. For x = 5128,
√
A(x) = 2827.4133,

√
3
π2x2 + |∆| = 2831.913,

√
3
π2x2 +

|∆|/(2
√

3
π2x2) = 2831.917, and |∆|/(2

√
3
π2x2) = 4.702307. For x = 1000,

|∆|/(2
√

3
π2x2) = 3.961776. This is some indication that

√
A(x) is not growing

due to the loge x term in Mertens’ result. Also, there is no apparent reason to ex-

pect that

√
8
∑A(x)/2
v=1 |γv| or

√
A(x)

∑A(x)
v=1 β

2
v− 1

π
√
3

will become non-linear as x

increases.) The Schwarz inequality gives A(x)/
√
x(x+ 1)(2x+ 1)/6 as a lower

bound of
√∑x

i=1M(bx/ic)2. For a linear least-squares fit of
∑x
i=1M(bx/ic)2

versus x for x = 2, 3, 4, ..., 1000, p1 = 1.47 with a 95% confidence interval
of (1.463, 1.477), p2 = −6.204 with a 95% confidence interval of (−10.26,
−2.146), SSE=1.06e+6, R-square-0.9941, and RMSE=32.6. For a linear least-
squares fit of

∑x
i=1M(bx/ic)2 versus x for x = 2, 3, 4, ..., 5128, p1 = 1.518

with a 95% confidence interval of (1.515, 1.521), p2 = −25.46 with a 95%
confidence interval of (−34.21, −16.71), SSE=1.307e+8, R-square-0.995, and
RMSE=159.7. For x values up to 5128,

√∑x
i=1M(bx/ic)2 is between 2 and 3

times as large as A(x)/
√
x(x+ 1)(2x+ 1)/6.

√∑x
i=1M(bx/ic)2 is greater than

|M(x)|, indicating that the Stieltjes hypothesis is true.
∑x
i=1 log i/d(i) appears

to be consistently greater than
∑x
i=1M(bx/ic)2 for x > 20. For x ≤ 5128,√∑x

i=1M(bx/ic)2 is about half-way between A(x)/
√
x(x+ 1)(2x+ 1)/6 and

ψ(x)/(A(x)/
√
x(x+ 1)(2x+ 1)/6).∑x

i=1M(bx/ic) is less than or equal to
∑x
i=1 φ(i)/i. For a linear least-

squares fit of
∑x
i=1 φ(i)/i versus x for x = 2, 3, 4, ..., 1000, p1 = 0.6079 with

a 95% confidence interval of (0.6079, 0.608), p2 = 0.3041 with a 95% confi-
dence of (0.2867, 0.3216), SSE=19.58, R-square=1, and RMSE=0.1401. For
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x > 13 and x <= 5128,
√∑x

i=1 φ(i)/i has been confirmed to be greater than
|M(x)|. (

∑x
i φ(i)/i is analogous to

∑x
i=1 log i/d(i). i is another way of express-

ing
∑
d|i φ(d) and d(i) log i is another way of expressing

∑
d|i log d.)

For a linear least-squares fit of
√
− 1

2

∑x
i=1M(bx/ic)i versus x for x =

2, 3, 4, ..., 5128 where M(1) is set to 0, p1 = 0.1885 with a 95% confidence
interval of (0.1885, 0.1885) and p2 = 0.09297 with a 95% confidence interval of
(0.08563, 0.1003). SSE=91.91, R-square=1, and RMSE=0.1339. The values are
bounded above by a line where the slope is the same as that of the least-squares
fit and the y-intercept is 1.0 more than that of the least-squares fit. Similarly,
the values are bounded below by a parallel line where the y-intercept is 1.0 less
than that of the least-squares fit. A 1

2

∑x
i=1M(bx/ic)i value is less than or

equal to the previous value (a value is equal to the previous value only if x is a

power of 2). For a linear least-squares fit of
√
− 1

2

∑x
i=1M(bx/ic)i versus x for

x = 2, 3, 4, ..., 5128 where M(1) and M(3) are set to 0, p1 = 0.1529 with a 95%
confidence interval of (0.1529, 0.1529) and p2 = 0.0746 with a 95% confidence
interval of (0.06539, 0.08382). SSE=145, R-square=1, and RMSE=0.1682. The
values are bounded above by a line where the slope is the same as that of the
least-squares fit and the y-intercept is 1.0 more than that of the least-squares
fit. Similarly, the values are bounded below by a parallel line where the y-
intercept is 1.0 less than that of the least-squares fit. A 1

2

∑x
i=1M(bx/ic)i value

is greater than the previous value if 12 divides x− 6, otherwise the value is less

than the previous value. For a linear least-squares fit of
√
− 1

2

∑x
i=1M(bx/ic)i

versus x for x = 2, 3, 4, ..., 5128 where M(1), M(3), and M(4) are set to 0,
p1 = 0.1332 with a 95% confidence interval of (0.1332, 0.1332) and p2 = 0.06404
with a 95% confidence interval of (0.05169, 0.0764). SSE=260.6, R-square=1,
and RMSE=0.2255. The values are bounded above by a line where the slope is
the same as that of the least-squares fit and the y-intercept is 1.0 more than that
of the least-squares fit. Similarly, the values are bounded below by a parallel
line where the y-intercept is 1.0 less than that of the least-squares fit. Except
when x = 8, a 1

2

∑x
i=1M(bx/ic)i value is less than the previous value if 6 does

not divide x. When 6 divides x, a 1
2

∑x
i M(bx/ic)i value is less than or equal

to the previous value only if 5 also divides x. For linear least-squares fits of√
− 1

2

∑x
i=1M(bx/ic)i versus x for x = 2, 3, 4, ..., 5128 where the M values up

to and includingM(5), M(6), M(7), ..., M(15) are set to 0, the slopes are 0.1078,
0.09893, 0.086, 0.07587, 0.0677, 0.06441, 0.05907, 0.05455, 0.04862, 0.04511, and
0.0436 respectively and the y-intercepts are 0.05121, 0.04607, 0.03871, 0.033,
0.02939, 0.02691, 0.02301, 0.01939, 0.01661, 0.01567, and 0.01452 respectively
(all the R-square values equal 1). Except for two x values (2263 and 4199) for the

linear least-squares fit of
√
− 1

2

∑x
i=1M(bx/ic)i versus x for x = 2, 3, 4, ..., 5128

where the M values up to and including M(12) are set to 0, the values are
bounded above by a line having the same slope as the least-squares fit and a
y-intercept 1.0 more than that of the least-squares fit. The values are bounded
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below by a line having the same slope as the least-squares fit and a y-intercept 1.0
less than that of the least-squares fit. For a quadratic least-squares fit of these
slopes (0.1885, 0.1529, 0.1332, 0.1078, 0.09893, 0.086, 0.07587, 0.0677, 0.06441,
0.05907, 0.05455, 0.04862, 0.04511, and 0.0436) versus

√
x for x = 1, 2, 3, ..., 14,

p1 = 0.0374 with a 95% confidence interval of (0.01188, 0.01559), p2 = −0.1178
with a 95% confidence interval of (−0.127, −0.1087), and p3 = 0.2926 with a
95% confidence interval of (0.2821, 0.3031). SSE=4.463e-5, R-square=0.9982,
and RMSE=0.002014.

For a linear least-squares fit of f(x) :=
∑x
i=1(mbx/ic − nbx/ic) versus x for

x = 2, 3, 4, ..., 101, p1 = −0.167 with a 95% confidence interval of (−0.1701,
−0.164) and p2 = 0.1822 with a 95% confidence interval of (0.0006782, 0.3637).
SSE=19.6, R-square=0.9916, and RMSE=0.4472. The least-squares fit has a
slope of about − 1

6 since f(x + 12) = f(x) − 2 for x = 2, 3, 4, .... For a linear

least-squares fit of
√
−
∑x
i=1(mbx/ic − nbx/ic)i versus x for x = 2, 3, 4, ..., 5128,

p1 = 0.1549 with a 95% confidence interval of (0.1549, 0.1549) and p2 = 0.07496
with a 95% confidence interval of (0.05814, 0.09178). SSE=483.2, R-square=1,
and RMSE=0.3071. This is about the same slope and y-intercept as that for the

linear least-squares fit of
√
− 1

2

∑x
i=1M(bx/ic)i versus x for x = 2, 3, 4, ..., 5128

where M(1) and M(3) were set to 0.

4 AMeasure Associated with the Farey Sequence
Polygon

A simple polygon is generated when the denominators of the fractions in a Farey
sequence are mapped to the y axis of a rectangular coordinate system, the nu-
merators of the fractions are mapped to the x axis, and the points corresponding
to the successive fractions are connected (no proof that the polygon is simple is
given here). The point corresponding to 0/1 is included so that the point cor-
responding to 1/1 can be connected to it, thereby closing the polygon. In the
following, the square roots of the lengths of the sides of this polygon (excluding
the side corresponding to 1/1 and 0/1) are used as a measure in lieu of |δv|.
The two greatest lengths of sides of the polygon are ((x − 1)2 + (x − 2)2)1/2

and ((x− 1)2 + 1)1/2. The average square root of the lengths is then less than√
x. When plotted against

√
x, the “curve” of average square roots of lengths

is then bounded above by a line having a slope of 1. For a linear least-squares
fit of the average length of a side of the polygon versus x for x = 2, 3, 4, ...900,
p1 = 0.3826 with a 95% confidence interval of (0.3826, 0.3826) and p2 = 0.1994
with a 95% confidence interval of (0.1867, 0.2122). SSE=8.511, R-square=1,
and RMSE=0.09741. For a linear least-squares fit of the average square root of
the length of a side of the polygon versus

√
x for x = 2, 3, 4, ..., 900, p1 = 0.5689

with a 95% confidence interval of (0.5687, 0.569) and p2 = 0.04642 with a
95% confidence interval of (0.04261, 0.05024). SSE=0.3349, R-square=1, and
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RMSE=0.01932. When plotted against
√
x, the “curve” of average square roots

of lengths has a greater slope than the “curve” of

√
A(x)

∑A(x)
v=1 δ

2
v values.

A sequence xn of real numbers is uniformly distributed (mod 1) if and only if
for every Riemann-integrable function f on [0, 1] one has limN→∞

1
N

∑
n≤N f([xn]) =∫ 1

0
f(x)dx. (The brackets “[ ]” denote the fractional part of the operand.) Some

re-ordering of the sequence of square roots of the lengths of the sides of the poly-
gon generated by a Farey sequence (probably corresponding to the lexicographic
ordering used for the Farey fractions) appears to be uniformly distributed (mod
1). (See the section “Farey Points” in Kuipers and Niederreiter’s [6] book.)
For a few functions such as sine, cosine, square, cube, etc., the sums have been
computed and confirmed to approach the expected values.

[rv] (used to define βv) is uniformly distributed (mod 1). Assuming that

A(x) approaches 3x2

π2 as x→∞, it should be possible to prove that

√∑A(x)
v=1 β

2
v

approaches 1 as x→∞.
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