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Abstract

Empirical evidence in support of variants of Fermat’s Last Theorem is
presented.

1 Introduction

Let a, b, and c be natural numbers relatively prime in pairs and let p be an odd
prime. Every prime factor of (ap+bp)/(a+b) other than p is of the form pk+1.
p (and no higher power of p) divides (ap + bp)/(a + b) if and only if p divides
a+ b. Let q be a natural number. q will be said to be a pth power with respect
to (ap + bp)/(a + b) if q(f−1)/p ≡ 1(mod f) for every prime factor f , f 6= p, of
(ap + bp)/(a+ b). Let [(ap + bp)/(a+ b)] denote (ap + bp)/(a+ b)/p if p divides
a+ b, or (ap + bp)/(a+ b) otherwise. Similarly, let [a+ b] denote (a+ b)/p if p
divides a + b, or a + b otherwise. The following two conjectures are the main
topic of this article;

(1) If p > 3, there do not exist a and b such that [(ap+bp)/(a+b)] is a pth power.

(2) If p > 3, there do not exist a and b such that [(ap + bp)/(a + b)] is a pth
power, 2p does not divide a, b, a− b, or a+ b, and a, b, a− b, or [a+ b] is a pth
power.

If the first conjecture is true, there are no solutions of Fermat’s equation ap+bp =
cp (which, of course, is already known). The second conjecture encompasses the
first case of Fermat’s Last Theorem (where p does not divide abc). (In 1810,
Barlow [1] proved that ap + bp = cp only if [(ap + bp)/(a + b)] is a pth power.)
Let T be a natural number. Since a, b, and T are not symmetrical in the
equation [(ap + bp)/(a + b)] = T p, it is not obvious how to apply the theory of
elliptic curves to these problems. The “pth power w.r.t.” concept and the iden-
tity ap + bp = (ap − bp) + 2bp play a central role in proving these conjectures.
For example, if p divides a + b and (ap + bp)/(a + b)/p is a pth power, then
p(a+b)/2 is a pth power w.r.t. (ap−bp)/(a−b) (this is a succinct way of saying
that (p(a + b))(f−1)/p ≡ 2(f−1)/p(mod f) for every prime factor f , f 6= p, of
(ap− bp)/(a− b)). If p is not a pth power modulo a prime f of the form pk+ 1,
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then, for example, if f does not divide a + b, (px(a + b))(f−1)/p ≡ 1(mod f),
0 ≤ x < p, has a solution (x defines a congruence class). Furthermore, if 2 is
not a pth power modulo f , then, for example, (2y(a + b))(f−1)/p ≡ 1(mod f),
0 ≤ y < p, has a solution and a+b can be eliminated from the congruences. The
objective in the following is to eliminate a, b, a− b, and a+ b from certain con-
gruences so that congruence relationships involving only 2 and p are obtained.
When p = 3, there do exist a and b such that [(ap + bp)/(a+ b)] is a pth power
and many properties of such a and b, among them reformulated versions of the
classical Furtwängler and Vandiver theorems for Fermat’s equation, can be em-
pirically derived. In the following, these “propositions” are stated as if they
were true for all p. One justification for doing this is the first conjecture above.
Also, more properties of hypothetical solutions of Fermat’s equation are shared
by solutions of the equation [(ap + bp)/(a+ b)] = T p, p = 3. For example, it can
be easily proved that ap+bp = cp implies 2 is a pth power w.r.t. (ap−bp)/(a−b).
Based on empirical evidence collected for p = 3, if [(ap + bp)/(a + b)] is a pth
power and 2p divides a−b or a+b, then 2 is a pth power w.r.t. (ap−bp)/(a−b)
(although there is no apparent reason why this should be true).

2 Congruence Properties of Prime Factors of
[(ap− bp)/(a− b)] when [(ap + bp)/(a+ b)] is a pth
Power

The following propositions are based on data collected for p = 3;

(3) If [(ap + bp)/(a + b)] is a pth power and 2p does not divide a, b, a − b, or
a+ b, then 2, p, and p/2 are not pth powers w.r.t. (ap − bp)/(a− b).

(4) If [(ap + bp)/(a+ b)] is a pth power, 2p does not divide a, b, a− b, or a+ b,
and f is a prime factor of [(ap − bp)/(a− b)], then 2 is a pth power modulo f if
and only if f is of the form p2k + 1.

By these two propositions, if [(ap+bp)/(a+b)] is a pth power and 2p does not di-
vide a, b, a−b, or a+b, then there is at least one prime factor of [(ap−bp)/(a−b)]
not of the form p2k + 1. In 1912, Furtwängler [2] proved that if ap + bp = cp,
q divides a and p does not divide ac, or q divides b and p does not divide bc,
then qp−1 ≡ 1(mod p2). (Proofs of this theorem use the condition that a + b
must be a pth power and it is not obvious how to prove a reformulated version
of the theorem without using this condition.) Furtwängler also proved that if
ap + bp = cp, q divides a− b or a+ b, and p does not divide a− b or a+ b, then
qp−1 ≡ 1(mod p2). Note that if p does not divide a natural number d, then
dp(p−1) ≡ 1(mod p2) by Euler’s theorem. Then if qp−1 ≡ 1(mod p2), q is a pth
power modulo p2. The reformulated version of Furtwängler’s theorems is;
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(5) If [(ap+bp)/(a+b)] is a pth power and 2 does not divide a, then p does not di-
vide a and every prime factor of a is a pth power modulo p2. If [(ap+bp)/(a+b)]
is a pth power, 2 divides a, and p does not divide a, then (a/2)p−1 ≡ 1(mod
p3). Analogous results hold for b. If [(ap + bp)/(a + b)] is a pth power and 2
does not divide a − b, then p does not divide a − b and every prime factor of
a− b is a pth power modulo p2. If [(ap + bp)/(a+ b)] is a pth power and 2 does
not divide a+ b, then p2 does not divide a+ b and every prime factor of a+ b
other than p (if p divides a+ b) is a pth power modulo p2.

The peculiar form of Furtwängler’s second theorem, that is, the condition that
p not divide a − b or a + b, makes sense when viewed from this perspective;
2 divides a − b if and only if 2 divides a + b. This proposition implies that if
[(ap + bp)/(a+ b)] is a pth power, p divides a, b, a− b, or a+ b, and 2p does not
divide a, b, a−b, or a+b, then 2 divides a or b, and p divides a+b. Note that this
proposition implies “split” 2 and p are not possible when ap+ bp = cp, p divides
c. (By Barlow’s formulas, p(a + b) must be a pth power when ap + bp = cp, p
divides c.) The requirement that 2p divide a + b could be said to be a charac-
teristic property of the equation ap+bp = cp, p divides c. More propositions are;

(6) If [(ap + bp)/(a + b)] is a pth power, then p2 divides a if 2p divides a, p2

divides b if 2p divides b, p2 divides a− b if 2p divides a− b, or p3 divides a+ b
if 2p divides a+ b.

(7) If [(ap + bp)/(a+ b)] is a pth power, 2 divides a or b, and f is a prime factor
of [(ap − bp)/(a− b)] not of the form p2k + 1, then exactly one of 2p, p, or p/2
is a pth power modulo f .

(8) If [(ap + bp)/(a+ b)] is a pth power, p divides a+ b, and f is a prime factor
of [(ap − bp)/(a − b)] of the form p2k + 1, then pa, pb, p2(a − b), and p(a + b)
are pth powers modulo f . If [(ap + bp)/(a+ b)] is a pth power, p divides a, b, or
a− b, and f is a prime factor of [(ap − bp)/(a− b)] of the form p2k + 1, then a,
b, p(a− b), and a+ b are pth powers modulo f .

Note that p is not precluded from being a pth power modulo f in Proposition
(8). If [(ap+bp)/(a+b)] is a pth power and 2p does not divide a, b, a−b, or a+b,
there is apparently nothing to prevent p from being a pth power modulo every
prime factor of [(ap−bp)/(a−b)] not of the form p2k+1. By these propositions,
if [(ap + bp)/(a + b)] is a pth power, 2p does not divide a, b, a − b, or a + b,
and p is a pth power modulo every prime factor of [(ap − bp)/(a− b)] not of the
form p2k + 1, then a, b, a − b and [a + b] are not pth powers. (By Proposition
(3), there would be at least one prime factor f of [(ap− bp)/(a− b)] of the form
p2k + 1 such that p was not a pth power modulo f . Then by Proposition (8),
a, b, a− b, or [a+ b] couldn’t be a pth power.) More propositions are;

(9) If [(ap + bp)/(a + b)] is a pth power, 2 divides a, p does not divide a, f is
a prime factor of [(ap − bp)/(a − b)] not of the form p2k + 1, and p/2 is a pth
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power modulo f , then pa, p2b, p(a− b), and a+ b are pth powers modulo f . If
[(ap + bp)/(a+ b)] is a pth power, 2 divides a, p does not divide a, f is a prime
factor of [(ap−bp)/(a−b)] not of the form p2k+1, and 2p is a pth power modulo
f , then pa, b, a− b, and p2(a+ b) are pth powers modulo f . Analogous results
hold for b.

(10) If [(ap + bp)/(a + b)] is a pth power, 2 divides a, and p does not divide a,
then pa, 2pb, 22p2(a− b), and 22p(a+ b) are pth powers w.r.t. (ap− bp)/(a− b).
Also, either 2p is a pth power w.r.t. (ap − bp)/(a − b) or none of 2p, p, p/2,
or 2 is a pth power w.r.t. (ap − bp)/(a − b) (if [(ap − bp)/(a − b)] has only one
distinct prime factor, then [(ap − bp)/(a − b)] is prime and 2p is a pth power
w.r.t. (ap − bp)/(a− b)). Analogous results hold for b.

Note that if 2p is a pth power w.r.t. (ap − bp)/(a − b) in Proposition (10),
then a/2, b, a − b, and [a + b] are pth powers w.r.t. (ap − bp)/(a − b). Since
Propositions (8), (9), and (10) are based solely on data collected for p = 3, their
form is sometimes ambiguous in that the p2 and 22 factors might be pp−1 and
2p−1 instead. If p(a + b)/2 is a pth power w.r.t. (ap − bp)/(a − b) (as implied
by a second-case solution of Fermat’s equation, p divides c, p ≥ 3), f is a prime
factor of [(ap − bp)/(a − b)], and 2p is a pth power modulo f , then p2(a + b)
is a pth power modulo f , so the p2 factor of a + b in Proposition (9) is unam-
biguous. Propositions (9) and (10) are consistent when p is not a pth power
modulo f only if 8 is a pth power modulo f , but 8 can be a pth power modulo
f only if p = 3 (2f−1 ≡ 1(mod f) and (23)(f−1)/p ≡ 1(mod f), p 6= 3, implies
2(f−1)/p ≡ 1(mod f) [since in this case, the greatest common divisor of f − 1
and 3(f − 1)/p is (f − 1)/p], a contradiction). This follows from eliminating b,
a− b, and a+ b from the congruences if 2 divides a, or eliminating a, a− b, and
a+ b from the congruences if 2 divides b. If a 2p−1p factor of the a+ b term in
Proposition (10) had been used, some inconsistency for p > 3 could have been
avoided (this implies p/2, 22p, and 2p−1p are pth powers modulo f if p/2 is a
pth power modulo f , or 2p, 22p2, and 2p−1/p are pth powers modulo f if 2p is
a pth power modulo f). However, using a 2p−1pp−1, 22pp−1, 2p−1p2, or 22p2

factor of the a−b term in Proposition (10) implies that 8 is a pth power modulo
f , a contradiction for p > 3. This may just mean that one (or both) of the
propositions is specific to p = 3. It’s plausible that the maximum p exponent
used in Proposition (9) is related to the number of the terms a, b, a − b, and
a+ b (and not to the p value itself). If p is not a pth power modulo f , then, for
example, (px(a− b))(f−1)/p ≡ 1(mod f), 0 ≤ x < p, has a solution, so Proposi-
tion (9) should remain the same for p > 3. If it’s granted that 2p should be a
pth power modulo f some of the time (note that this implies that p is not a pth
power modulo f), then Proposition (10) should remain the same for p > 3. (In
this case, eliminating b, a− b, and a+ b from the congruences if 2 divides a, or
eliminating a, a−b, and a+b from the congruences if 2 divides b, gives 2p, 22p2,
and p/22 are pth powers modulo f . Note that 22p2 is the square of 2p; x = 2 is
the only possible solution of [2xp2(a− b)](f−1)/p ≡ 1(modf) when x = 1 is the
solution of (2xpa)(f−1)/p ≡ 1(mod f), 2 divides b, or (2xpb)(f−1)/p ≡ 1(mod f),
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2 divides a). Other propositions are;

(11) If [(ap + bp)/(a + b)] is a pth power, 2 divides a, f is a prime factor of
[(ap− bp)/(a− b)] not of the form p2k+ 1, and p is a pth power modulo f , then
a, 2b, 22(a− b), and 22(a+ b) (and not 2) are pth powers modulo f . Analogous
results hold for b. If [(ap + bp)/(a+ b)] is a pth power, 2 divides a− b or a+ b,
f is a prime factor of [(ap − bp)/(a− b)] not of the form p2k + 1, and p is a pth
power modulo f , then a−b, a+b, and 2 (and not a or b) are pth powers modulo f .

(12) If [(ap + bp)/(a + b)] is a pth power, then a is a pth power w.r.t. (ap −
bp)/(a−b) if 2p divides a, or b is a pth power w.r.t. (ap−bp)/(a−b) if 2p divides
b, or p(a− b) and a+ b are pth powers w.r.t. (ap− bp)/(a− b) if 2p divides a− b,
or p2(a−b) and p(a+b) are pth powers w.r.t. (ap−bp)/(a−b) if 2p divides a+b.

(13) If [(ap + bp)/(a+ b)] is a pth power and 2p divides a− b or a+ b, then 2 is
a pth power w.r.t. (ap − bp)/(a− b).

(14) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, f is a prime factor of
[(ap − bp)/(a − b)] not of the form p2k + 1, and p/2 is a pth power modulo f ,
then a, pb, a− b, and p2(a+ b) are pth powers modulo f . If [(ap + bp)/(a+ b)]
is a pth power, 2p divides a, f is a prime factor of [(ap − bp)/(a− b)] not of the
form p2k+1, and 2p is a pth power modulo f , then a, p2b, p2(a−b), and p(a+b)
are pth powers modulo f . Analogous results hold for b. If [(ap + bp)/(a+ b)] is
a pth power, 2p divides a − b, f is a prime factor of [(ap − bp)/(a − b)] not of
the form p2k+ 1, and p is not a pth power modulo f , then (1) pa, p2b, p(a− b),
and a + b are pth powers modulo f , or (2) p2a, pb, p(a − b), and a + b are pth
powers modulo f . If [(ap + bp)/(a+ b)] is a pth power, 2p divides a+ b, f is a
prime factor of [(ap − bp)/(a − b)] not of the form p2k + 1, and p is not a pth
power modulo f , then (1) a, p2b, p2(a− b), and p(a+ b) are pth powers modulo
f , or (2) p2a, b, p2(a− b), and p(a+ b) are pth powers modulo f .

(15) If [(ap + bp)/(a + b)] is a pth power, 2p divides a or b, [(ap − bp)/(a − b)]
has two distinct prime factors, and neither distinct prime factor is of the form
p2k+ 1, then [(ap− bp)/(a− b)] is of the form p2k+ 1 and (1) 2p is a pth power
modulo both distinct prime factors, or (2) p is a pth power modulo both distinct
prime factors, or (3) p/2 is a pth power modulo both distinct prime factors. If
[(ap + bp)/(a + b)] is a pth power, 2p divides a − b or a + b, [(ap − bp)/(a − b)]
has two distinct prime factors, and neither distinct prime factor is of the form
p2k + 1, then [(ap − bp)/(a− b)] is of the form p2k + 1.

(16) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b, and
2p, p/2, or p (and not 2) is a pth power w.r.t. (ap − bp)/(a− b), then p divides
a or b and at least one prime factor of [(ap − bp)/(a − b)] is not of the form
p2k+ 1. If [(ap + bp)/(a+ b)] is a pth power, 2p divides a, b, a− b, or a+ b, and
[(ap−bp)/(a−b)] has only one distinct prime factor, then 2p, p/2, or p is not a pth
power w.r.t. (ap−bp)/(a−b) when 2 is not a pth power w.r.t. (ap−bp)/(a−b). If
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[(ap+bp)/(a+b)] is a pth power, 2p divides a, b, a−b, or a+b, [(ap−bp)/(a−b)]
has exactly two distinct prime factors, [(ap − bp)/(a− b)] 6= pk11 p

k2
2 where p di-

vides k1 or k2, and 2p, p/2, or p (and not 2) is a pth power w.r.t. (ap−bp)/(a−b),
then both distinct prime factors of [(ap−bp)/(a−b)] are not of the form p2k+1.

In this section, it is assumed that [(ap − bp)/(a− b)] can’t be a pth power when
[(ap + bp)/(a+ b)] is a pth power. (As will be shown, the congruence properties
of the prime factors of [(ap + bp)/(a+ b)] when [(ap + bp)/(a+ b)] is a pth power
are similar to the congruence properties of the prime factors of [(ap−bp)/(a−b)]
when [(ap + bp)/(a+ b)] is a pth power, but are not the same.)

Let T be a natural number. If p = 3, every prime factor of T is of the form
pk+ 1, and T has n such distinct prime factors, then T p or pT p has exactly pn
representations of the form (ap + bp)/(a+ b). Proving the first conjecture when
p divides a + b would entail proving that if one representation of pT p of the
form (ap + bp)/(a+ b) exists, then other representations exist and that 2 and p
split for some of these representations. There is little evidence that there would
exist different representations of pT p of the form (ap + bp)/(a + b) for p > 3.
Even if there were a representation ((a′)p + (b′)p)/(a′ + b′) with split 2 and p,
how to deal with the case where p was a pth power modulo every prime factor
of [((a′)p − (b′)p)/(a′ − b′)] not of the form p2k + 1 is unknown.

3 More Congruence Properties of Prime Factors
of [(ap − bp)/(a − b)] when [(ap + bp)/(a + b)] is a
pth Power

Let f1 and f2 denote relatively prime coefficients of a and b. Propositions in-
volving linear combinations of a and b are;

(17) If [(ap + bp)/(a+ b)] is a pth power, 2p divides a, b, a− b, or a+ b, 2 (and
not p) is a pth power w.r.t. (ap − bp)/(a − b), and one of a + 2b, p(a + 2b),
p2(a+ 2b), ..., pp−1(a+ 2b) is a pth power w.r.t. (ap− bp)(a− b), then (1) a+ 2b
and p(2a+ b), or (2) 2a+ b and p(a+ 2b), or (3) a+ 2b and p2(2a+ b), or (4)
2a + b and p2(a + 2b), or (5) p(a + 2b) and p(2a + b), or (6) p2(a + 2b) and
p2(2a+ b) are pth powers w.r.t. (ap − bp)/(a− b). If [(ap + bp)/(a+ b)] is a pth
power, 2p divides a, b, a− b, or a+ b, all the prime factors of [(ap− bp)/(a− b)]
are not of the form p2k+1, 2 (and not p) is a pth power w.r.t. (ap− bp)/(a− b),
and one of a + 2b, p(a + 2b), p2(a + 2b), ..., pp−1(a + 2b) is a pth power w.r.t.
(ap − bp)(a − b), then (1) a + 2b and p(2a + b), or (2) 2a + b and p(a + 2b), or
(3) a + 2b and p2(2a + b), or (4) 2a + b and p2(a + 2b) are pth powers w.r.t.
(ap − bp)/(a− b). If [(ap + bp)/(a+ b)] is a pth power, 2p divides a, b, a− b, or
a + b, all the prime factors of [(ap − bp)/(a − b)] are of the form p2k + 1, and
2 (and not p) is a pth power w.r.t. (ap − bp)/(a − b), then (1) p(a + 2b) and
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p(2a+b), or (2) p2(a+2b) and p2(2a+b) are pth powers w.r.t. (ap−bp)/(a−b).

(18) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b, and
2p (and not 2) is a pth power w.r.t. (ap − bp)/(a − b), then (1) a + 2b and
p(2a+ b), or (2) 2a+ b and p(a+ 2b) are pth powers w.r.t. (ap − bp)/(a− b). If
[(ap + bp)/(a+ b)] is a pth power, 2p divides a, b, a− b, or a+ b, and p/2 (and
not 2) is a pth power w.r.t. (ap− bp)/(a− b), then (1) p(a+ 2b) and p2(2a+ b),
or (2) p(2a+ b) and p2(a+ 2b) are pth powers w.r.t. (ap − bp)/(a− b).

(19) If [(ap + bp)/(a+ b)] is a pth power, 2p divides a, b, a− b, or a+ b, and p
(and not 2) is a pth power w.r.t. (ap− bp)/(a− b), then (1) a+2b and 2(2a+ b),
or (2) 2a+ b and 2(a+ 2b) are pth powers w.r.t. (ap − bp)/(a− b).

(20) If [(ap + bp)/(a+ b)] is a pth power, 2p does not divide a, b, a− b, or a+ b,
and 2p (and not 2) is a pth power w.r.t. (ap−bp)/(a−b), then (1) p(a+2b) and
p2(2a+b), or (2) p(2a+b) and p2(a+2b) are pth powers w.r.t. (ap−bp)/(a−b).

Let a 6-bit code (for p = 3) represent which (if any) of f1a + f2b, f2a + f1b,
p(f1a + f2b), p(f2a + f1b), p

2(f1a + f2b), p
2(f2a + f1b), ..., pp−1(f1a + f2b),

pp−1(f2a+f1b) are pth powers w.r.t. (ap−bp)/(a−b). For example, if p = 3 and
only p(f1a+f2b) and p(f2a+f1b) are pth powers w.r.t. (ap−bp)/(a−b), then the
code would be a hexadecimal “c”. (When specified, the code may also represent
which of f1a+f2b, f2a+f1b, 2(f1a+f2b), 2(f2a+f1b), 22(f1a+f2b), 22(f2a+f1b),
..., 2p−1(f1a+ f2b), 2p−1(f2a+ f1b) are pth powers w.r.t. (ap − bp)(a− b).)

(21) If [(ap+bp)/(a+b)] is a pth power, 2p divides a, b, a−b, or a+b, and 2p (and
not 2) is a pth power w.r.t. (ap−bp)/(a−b), then one of 17a+53b, p(17a+53b),
p2(17a+ 53b), ..., pp−1(17a+ 53b) is a pth power w.r.t. (ap− bp)(a− b) and one
of 53a + 17b, p(53a + 17b), p2(53a + 17b), ..., pp−1(53a + 17b) is a pth power
w.r.t. (ap − bp)/(a− b). (f1, f2) values, f1 < f2, where this proposition is true
(other than the one listed in Proposition (18)) are (17, 53), (36, 53) (19, 89),
(70, 89), (17, 90), (73, 90), (56, 163), (107, 163), (90, 199), (109, 199), (71, 252),
(181, 252), (19, 308), (289, 308), ....

Although the (f1, f2) values have been listed in order of increasing f2 values,
they can be ordered into groups of four ((f1, f2), (f ′1, f ′2), (f ′′1 , f ′′2 ), (f ′′′1 , f ′′′2 ))
where f2 > 2f1, f ′1 = f2−f1, f ′2 = f2, f ′′1 = f2−2f1, f ′′2 = 2f2−f1, f ′′′1 = f1+f2,
and f ′′′2 = 2f2 − f1. (This is the case for similar results in this section.) In the
following table, the codes for the above (f1, f2) values are given in a row.

c 21 3 18 12 12 18 3 21 c 12 12 24 24
c 12 3 24 21 21 24 3 12 c 21 21 18 18

There are 2 distinct rows of codes for all a and b that satisfy the above condi-
tions. Such a row of codes will be referred to as a ”codeword”. For example, for
a = 21762 and b = 16271 (where (ap− bp)/(a− b) = 7 ·1123 ·138967) and where
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the (f1, f2) values have been ordered in groups of four as above, the codeword
is c, 12, 3, 24, 21, 21, 24, 3, 12, c, 18, 18, 21, 21, 24, 3, 12, c, 18, 18, 21, 21,
24, 3, c, 12, 3, 24, 12, c, 18, 18, c, 12, 3, 24, c, 12, 3, 24, 12, c, 18, 18, 21,
21, 24, 3, 21, 21, 24, 3, 21, 21, 24, 3, .... For a = 17783 and b = 8910 (where
(ap − bp)/(a− b) = 7 · 3889 · 20353), the codeword is c, 21, 3, 18, 12, 12, 18, 3,
21, c, 24, 24, 12, 12, 18, 3, 21, c, 24, 24, 12, 12, 18, 3, c, 21, 3, 18, 21, c, 24, 24,
c, 21, 3, 18, c, 21, 3, 18, 21, c, 24, 24, 12, 12, 18, 3, 12, 12, 18, 3, 12, 12, 18,
3, .... Possible code values are 30, c, 3, 18, 6, 21, 12, 9, and 24. A table of (f1,
f2), (f ′1, f ′2), (f ′′1 , f ′′2 ), and (f ′′′1 , f ′′′2 ) values satisfying the above conditions for
f2 ≤ 2000 is;

(17, 53) (36, 53) (19, 89) (70, 89)
(17, 90) (73, 90) (56, 163) (107, 163)

(90, 199) (109, 199) (19, 308) (289, 308)
(71, 252) (181, 252) (110, 433) (323, 433)

(126, 323) (197, 323) (71, 520) (449, 520)
(179, 540) (361, 540) (182, 901) (719, 901)
(251, 629) (378, 629) (127, 1007) (880, 1007)
(216, 703) (487, 703) (271, 1190) (919, 1190)
(127, 757) (630, 757) (503, 1387) (884, 1387)

(269, 1061) (792, 1061) (523, 1853) (1330, 1853)
(594, 1207) (613, 1207) (19, 1820) (1801, 1820)
(307, 1260) (953, 1260) (646, 2213) (1567, 2213)
(629, 1638) (1009, 1638) (380, 2647) (2267, 2647)
(71, 1890) (1819, 1890) (1748, 3709) (1961, 3709)

The f1, f ′1, f ′′1 , and f ′′′1 values are of the form (1) p2k1, p2k2 + 1, p2k3 + 1 and
p2k4 + 1, or (2) p2k1, p2k2 − 1, p2k3 − 1 and p2k4 − 1, or (3) p2k1 + 1, p2k2,
p2k3 − 1 and p2k4 + 2, or (4) p2k1 + 1, p2k2 − 1, p2k3 − 2 and p2k4 + 1, or
(5) p2k1 − 1, p2k2, p2k3 + 1 and p2k4 − 2, or (6) p2k1 − 1, p2k2 + 1, p2k3 + 2
and p2k4 − 1. For a quadratic least-squares fit of the 34 f2 values (in ascending
order) less than or equal to 8000, p1 = 5.976 with a 95% confidence interval
of (4.948, 7.004), p2 = 33.49 with a 95% confidence interval of (−3.59, 70.57),
p3 = 71.69 with a 95% confidence interval of (−209.8, 353.2), SSE=1.978e+06,
R-square=0.9903, and RMSE=252.6 (where y = p1x

2 + p2x+ p3).

The above (f1, f2) values (not grouped) are solutions of [(ap+bp)/(a+b)] = T p.
The different representations of T p and pT p for p = 3 account for the groups of
four (f1, f2) values. If negative f1 values are allowed, there are groups of six
(f1, f2) values. The additional (f1, f2) values are (f ′′′′1 = −f1, f ′′′′2 = f ′1) and
(f ′′′′′1 = −f ′′1 , f ′′′′′2 = f ′′′1 ) and correspond to solutions of [(ap−bp)/(a−b)] = T p.
As expected, there do not appear to be any such codewords when p = 5, 2p (and
not 2) is a pth power w.r.t. (ap− bp)/(a− b), and 2p divides a, b, a+ b, or a− b.

(22) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b,
[(ap − bp)/(a − b)] has exactly two distinct prime factors, 2p (and not 2) is a
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pth power w.r.t. (ap − bp)/(a− b), and one of a+ 3b, p(a+ 3b), p2(a+ 3b), ...,
pp−1(a+ 3b) is a pth power w.r.t. (ap− bp)(a− b), then one of 3a+ b, p(3a+ b),
p2(3a + b), ..., pp−1(3a + b) is a pth power w.r.t. (ap − bp)/(a − b). (f1, f2)
values, f1 < f2, where this proposition is true (other than the ones listed in
Propositions (18) and (21)) are (1, 3), (2, 3), (1, 5), (4, 5), (3, 8), (5, 8), (2, 13),
(11, 13), (16, 55), (39, 55), (23, 94), (71, 94), (2, 125), (123, 125), (55, 142),
(87, 142), (62, 149), (87, 149), (32, 229), (197, 229), (25, 236), (211, 236), (39,
236), (197, 236), (121, 248), (127, 248), (124, 253), (129, 253), ....

In the following table, the codewords for (f1, f2) values of (1, 3), (2, 3), (1, 5),
(4, 5), (3, 8), (5, 8), (2, 13), (11, 13), (16, 55), (39, 55), (23, 94), (71, 94), (2,
125), and (123, 125) are given. There are 2p2 distinct codewords for all a and
b that satisfy the above conditions.

9 9 21 c 18 3 9 9 30 6 c 21 30 6
24 3 6 6 30 9 c 12 18 18 9 30 18 18
6 6 12 c 24 3 6 6 30 9 c 12 30 9

18 3 9 9 30 6 c 21 24 24 6 30 24 24
30 6 c 21 24 24 6 30 6 30 12 12 6 30
24 24 6 30 6 30 12 12 3 18 30 6 3 18
21 c 24 24 c 21 3 18 12 12 18 3 12 12
9 30 21 21 3 24 30 9 6 6 12 c 6 6
6 30 12 12 3 18 30 6 9 9 21 c 9 9

18 18 9 30 9 30 21 21 3 24 30 9 3 24
c 21 3 18 12 12 18 3 21 c 24 24 21 c

12 12 18 3 21 c 24 24 c 21 3 18 c 21
12 c 18 18 c 12 3 24 21 21 24 3 21 21
30 9 c 12 18 18 9 30 9 30 21 21 9 30
3 18 30 6 9 9 21 c 18 3 9 9 18 3
c 12 3 24 21 21 24 3 12 c 18 18 12 c
3 24 30 9 6 6 12 c 24 3 6 6 24 3

21 21 24 3 12 c 18 18 c 12 3 24 c 12

A continuation of the table for (f1, f2) values of (55, 142), (87, 142), (62, 149),
(87, 149), (32, 229), (197, 229), (25, 236), (211, 236), (39, 236), (197, 236), (121,
248), (127, 248), (124, 253), and (129, 253) is;
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30 6 3 18 c 21 30 6 6 30 c 21 30 6
24 3 6 6 6 6 12 c 3 24 9 30 18 18
30 9 3 24 c 12 30 9 9 30 c 12 30 9
18 3 9 9 9 9 21 c 3 18 6 30 24 24
9 9 18 3 21 c 9 9 9 9 12 12 6 30
3 18 30 6 30 6 c 21 18 3 30 6 3 18

21 c 12 12 24 24 18 3 c 21 18 3 12 12
9 30 18 18 21 21 9 30 30 9 12 c 6 6
6 30 24 24 12 12 6 30 30 6 21 c 9 9
3 24 30 9 30 9 c 12 24 3 30 9 3 24

12 12 21 c 18 3 24 24 12 12 24 24 21 c
c 21 c 21 3 18 3 18 21 c 3 18 c 21

12 c 21 21 18 18 24 3 c 12 24 3 21 21
6 6 24 3 12 c 6 6 6 6 21 21 9 30

24 24 6 30 6 30 12 12 24 24 9 9 18 3
21 21 12 c 24 3 18 18 21 21 18 18 12 c
18 18 9 30 9 30 21 21 18 18 6 6 24 3

c 12 c 12 3 24 3 24 12 c 3 24 c 12

(23) If [(ap + bp)/(a + b)] is a pth power, 2p does not divide a, b, a − b, or
a + b, and 2p (and not 2) is a pth power w.r.t. (ap − bp)/(a − b), then one
of 17a + 53b, p(17a + 53b), p2(17a + 53b), ..., pp−1(17a + 53b) is a pth power
w.r.t. (ap − bp)(a − b) and one of 53a + 17b, p(53a + 17b), p2(53a + 17b), ...,
pp−1(53a+ 17b) is a pth power w.r.t. (ap− bp)/(a− b). (f1, f2) values, f1 < f2,
where this proposition is true (other than the one listed in Proposition (20))
are (17, 53), (36, 53), (19, 89), (70, 89), (17, 90), (73, 90), (56, 163), (107, 163),
(90, 199), (109, 199), (71, 252), (181, 252), (19, 308), (289, 308), ....

In the following table, the codewords for the above (f1, f2) values are given.
There are 2 distinct codewords for all a and b that satisfy the above conditions.

3 18 30 6 24 24 6 30 18 3 24 24 9 9
3 24 30 9 18 18 9 30 24 3 18 18 6 6

The table of f1, f ′1, f ′′1 , and f ′′′1 values satisfying the above conditions is the
same as for when 2p divides a, b, a− b, or a+ b.

(24) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b, and
p/2 (and not 2) is a pth power w.r.t. (ap − bp)/(a − b), then one of a + 19b,
p(a+ 19b), p2(a+ 19b), ..., pp−1(a+ 19b) is a pth power w.r.t. (ap − bp)(a− b)
and one of 19a + b, p(19a + b), p2(19a + b), ..., pp−1(19a + b) is a pth power
w.r.t. (ap − bp)/(a − b). (f1, f2) values, f1 < f2, for which this proposition is
true (other than the one listed in Proposition (18)) are (1, 19), (18, 19), (17,
37), (20, 37), (17, 90), (73, 90), (56, 163), (107, 163), (90, 199), (109, 199), (71,
252), (181, 252), (19, 308), (289, 308), ....

In the following table, the codewords for the above (f1, f2) values are given.
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There are two distinct codewords for all a and b that satisfy the above conditions.

3 24 30 9 18 18 9 30 24 3 18 18 6 6
3 18 30 6 24 24 6 30 18 3 24 24 9 9

A table of (f1, f2), (f ′1, f ′2), (f ′′1 , f ′′2 ), and (f ′′′1 , f ′′′2 ) values satisfying the above
conditions for f2 ≤ 1000 is;

(1, 19) (18, 19) (17, 37) (20, 37)
(17, 90) (73, 90) (56, 163) (107, 163)

(90, 199) (109, 199) (19, 308) (289, 308)
(71, 252) (181, 252) (110, 433) (323, 433)

(126, 323) (197, 323) (71, 520) (449, 520)
(37, 360) (323, 360) (286, 683) (397, 683)

(179, 540) (361, 540) (182, 901) (719, 901)
(251, 629) (378, 629) (127, 1007) (880, 1007)
(216, 703) (487, 703) (271, 1190) (919, 1190)

The f1, f ′1, f ′′1 , and f ′′′1 values are of the form (1) p2k1, p2k2 + 1, p2k3 + 1 and
p2k4+1, or (2) p2k1, p2k2−1, p2k3−1 and p2k4−1, or (3) p2k1+1, p2k2, p2k3−1
and p2k4 + 2, or (4) p2k1 + 1, p2k2 − 1, p2k3 − 2 and p2k4 + 1, or (5) p2k1 − 1,
p2k2, p2k3 + 1 and p2k4 − 2, or (6) p2k1 − 1, p2k2 + 1, p2k3 + 2 and p2k4 − 1.
The (f1, f2) values (not grouped) are solutions of [(ap + bp)/(a+ b)] = T p.

(25) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b,
[(ap − bp)/(a − b)] has exactly two distinct prime factors, p/2 (and not 2) is a
pth power w.r.t. (ap − bp)/(a− b), and one of a+ 3b, p(a+ 3b), p2(a+ 3b), ...,
pp−1(a+ 3b) is a pth power w.r.t. (ap− bp)(a− b), then one of 3a+ b, p(3a+ b),
p2(3a + b), ..., pp−1(3a + b) is a pth power w.r.t. (ap − bp)/(a − b). (f1, f2)
values, f1 < f2, for which this proposition is true (other than the ones listed in
Propositions (18) and (24)) are (1, 3), (2, 3), (1, 5), (4, 5), (3, 8), (5, 8), (2, 13),
(11, 13), (16, 55), (39, 55), (23, 94), (71, 94), (62, 149), (87, 149), (25, 236),
(211, 236), (39, 236), (197, 236), (124, 253), (129, 253), ....

In the following table, the codewords for (f1, f2) values of (1, 3), (2, 3), (1,
5), (4, 5), (3, 8), (5, 8), (2, 13), (11, 13), (16, 55), (39, 55), (23, 94), and (71,
94) are given. There are 2p2 distinct codewords for all a and b that satisfy the
above conditions.
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3 24 30 9 18 18 9 30 24 3 6 6
12 c 18 18 30 9 c 12 21 21 24 3
6 30 12 12 c 21 3 18 9 9 21 c

12 12 18 3 6 30 12 12 c 21 3 18
18 18 9 30 24 3 6 6 3 24 30 9
21 21 24 3 9 30 21 21 c 12 3 24
9 9 21 c 21 c 24 24 30 6 c 21

21 21 24 3 9 30 21 21 c 12 3 24
6 6 12 c 12 c 18 18 30 9 c 12
c 12 3 24 6 6 12 c 12 c 18 18

18 3 9 9 3 18 30 6 24 24 6 30
30 6 c 21 12 12 18 3 6 30 12 12
9 30 21 21 c 12 3 24 6 6 12 c
c 21 3 18 9 9 21 c 21 c 24 24

30 9 c 12 21 21 24 3 9 30 21 21
21 c 24 24 30 6 c 21 12 12 18 3
24 3 6 6 3 24 30 9 18 18 9 30
3 18 30 6 24 24 6 30 18 3 9 9

(26) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b, and
p (and not 2) is a pth power w.r.t. (ap − bp)/(a − b), then one of a + 19b,
2(a+ 19b), 22(a+ 19b), ..., 2p−1(a+ 19b) is a pth power w.r.t. (ap − bp)(a− b)
and one of 19a + b, 2(19a + b), 22(19a + b), ..., 2p−1(19a + b) is a pth power
w.r.t. (ap − bp)/(a − b). (f1, f2) values, f1 < f2, for which this proposition is
true (other than the one listed in Proposition (19)) are (1, 19), (18, 19), (17,
37), (20, 37), (17, 53), (36, 53), (19, 89), (70, 89), (17, 90), (73, 90), (56, 163),
(107, 163), (90, 199), (109, 199), (71, 252), (181, 252), (19, 308), (289, 308),
(126, 323), (197, 323), (37, 360), (323, 360), (110, 433), (328, 433), (71, 520),
(449, 520), (286, 683), (397, 683), ....

In the following table, the codewords for (f1, f2) values of (1, 19), (18, 19),
(17, 37), (20, 37), (17, 53), (36, 53), (19, 89), (70, 89), (17, 90), (73, 90), (56,
163), (107, 163), (90, 199), and (109, 199) are given. There are two distinct
codewords for all a and b that satisfy the above conditions.

3 24 3 24 3 24 3 24 18 18 24 3 24 3
3 18 3 18 3 18 3 18 24 24 18 3 18 3

A table of (f1, f2), (f ′1, f ′2), (f ′′1 , f ′′2 ), and (f ′′′1 , f ′′′2 ) values satisfying the above
conditions for f2 ≤ 1000 is;
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(1, 19) (18, 19) (17, 37) (20, 37)
(17, 53) (36, 53) (19, 89) (70, 89)
(17, 90) (73, 90) (56, 163) (107, 163)

(90, 199) (109, 199) (19, 308) (289, 308)
(71, 252) (181, 252) (110, 433) (323, 433)

(126, 323) (197, 323) (71, 520) (449, 520)
(37, 360) (323, 360) (286, 683) (397, 683)

(216, 703) (487, 703) (271, 1190) (919, 1190)
(127, 757) (630, 757) (503, 1387) (884, 1387)
(270, 971) (701, 971) (431, 1672) (1241, 1672)
(359, 990) (631, 990) (272, 1621) (1349, 1621)

The f1, f ′1, f ′′1 , and f ′′′1 values are of the form (1) p2k1, p2k2 + 1, p2k3 + 1 and
p2k4+1, or (2) p2k1, p2k2−1, p2k3−1 and p2k4−1, or (3) p2k1+1, p2k2, p2k3−1
and p2k4 + 2, or (4) p2k1 + 1, p2k2 − 1, p2k3 − 2 and p2k4 + 1, or (5) p2k1 − 1,
p2k2, p2k3 + 1 and p2k4 − 2, or (6) p2k1 − 1, p2k2 + 1, p2k3 + 2 and p2k4 − 1.
The (f1, f2) values (not grouped) are solutions of [(ap + bp)/(a+ b)] = T p.

(27) If [(ap + bp)/(a+ b)] is a pth power, 2p divides a, b, a− b, or a+ b, p (and
not 2) is a pth power w.r.t. (ap− bp)/(a− b), [(ap− bp)/(a− b)] has exactly two
distinct prime factors, and one of a+3b, 2(a+3b), 22(a+3b), ..., 2p−1(a+3b) is
a pth power w.r.t. (ap − bp)(a− b), then one of 3a+ b, 2(3a+ b), 22(3a+ b), ...,
2p−1(3a+ b) is a pth power w.r.t. (ap− bp)/(a− b). (f1, f2) values, f1 < f2, for
which this proposition is true (other than the ones listed in Propositions (19)
and (26)) are (1, 3), (2, 3), (1, 5), (4, 5), (3, 8), (5, 8), (2, 13), (11, 13), (16,
55), (39, 55), (23, 94), (71, 94), (2, 125), (123, 125), (55, 142), (87, 142), (62,
149), (87, 149), ...

In the following table, the codewords for (f1, f2) values of (1, 3), (2, 3), (1,
5), (4, 5), (3, 8), (5, 8), (2, 13), (11, 13), (16, 55), (39, 55), (23, 94), and (71,
94) are given. There are 2p2 distinct codewords for all a and b that satisfy the
above condition.
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21 c 12 12 30 6 30 6 12 12 21 c
30 9 30 9 21 21 12 c 9 30 6 6
12 c 21 21 30 9 30 9 21 21 12 c
9 30 6 6 c 12 c 12 6 6 9 30
6 30 9 9 c 21 c 21 9 9 6 30

30 6 30 6 12 12 21 c 6 30 9 9
3 18 3 18 24 24 18 3 18 3 24 24

24 24 18 3 18 3 24 24 3 18 3 18
c 12 c 12 6 6 9 30 12 c 21 21
3 24 3 24 18 18 24 3 24 3 18 18

18 3 24 24 3 18 3 18 24 24 18 3
9 9 6 30 21 c 12 12 30 6 30 6

12 12 21 c 6 30 9 9 c 21 c 21
18 18 24 3 24 3 18 18 3 24 3 24
24 3 18 18 3 24 3 24 18 18 24 3
6 6 9 30 12 c 21 21 30 9 30 9
c 21 c 21 9 9 6 30 21 c 12 12

21 21 12 c 9 30 6 6 c 12 c 12

(28) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b, and
2 (and not p) is a pth power w.r.t. (ap − bp)/(a − b), then one of a + 19b,
p(a+ 19b), p2(a+ 19b), ..., pp−1(a+ 19b) is a pth power w.r.t. (ap − bp)(a− b)
and one of 19a + b, p(19a + b), p2(19a + b), ..., pp−1(19a + b) is a pth power
w.r.t. (ap − bp)/(a − b). (f1, f2) values, f1 < f2, for which this proposition is
true are (1, 19), (17, 37), (17, 53), (19, 89), (251, 629), (127, 1007), (127, 757),
(503, 1387), (269, 1061), (523, 1853), (233, 1637), (1171, 3041), (703, 1873),
(467, 3043), ....

In the following table, the codewords for the above (f1, f2) values are given.
There are two distinct codewords for all a and b that satisfy the above conditions.

c 3 c 3 c 3 c 3 c 3 c 3 c 3
30 c 30 c 30 c 30 c 30 c 30 c 30 c

(29) If [(ap + bp)/(a+ b)] is a pth power, 2p divides a, b, a− b, or a+ b, 2 (and
not p) is a pth power w.r.t. (ap− bp)/(a− b), and one of 18a+19b, p(18a+19b),
p2(18a + 19b), ..., pp−1(18a + 19b) is a pth power w.r.t. (ap − bp)(a − b), then
one of 19a+ 18b, p(19a+ 18b), p2(19a+ 18b), ..., pp−1(19a+ 18b) is a pth power
w.r.t. (ap − bp)/(a − b). (f1, f2) values, f1 < f2, for which this proposition is
true (including (f1, f2) values listed in Proposition (28)) are (1, 19), (18, 19),
(17, 37), (20, 37), (17, 53), (36, 53), (19, 89), (70, 89), (251, 629), (378, 629),
(127, 1007), (880, 1007), (127, 757), (630, 757), (503, 1387), (884, 1387), (269,
1061), (792, 1061), (523, 1853), (1330, 1853), (233, 1637), (1404, 1637), (1171,
3041), (1870, 3041), (703, 1873), (1170, 1873), (467, 3043), (2576, 3043), ....
Note that the (f1, f2) values have been ordered in the groups of four.

In the following table, the codewords for (f1, f2) values of (1, 19), (18, 19), (17,
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37), (20, 37), (17, 53), (36, 53), (19, 89), (70, 89), (251, 629), (378, 629), (127,
1007), (880, 1007), (127, 757), (630, 757), (503, 1387), (884, 1387), (269, 1061),
(792, 1061), (523, 1853), and (1330, 1853) are given. There are 2p distinct code-
words for all a and b that satisfy the above conditions.

c 21 3 18 c 21 3 18 c 21 3 18 c 21 3 18 c 21 3 18
30 9 c 12 30 9 c 12 30 9 c 12 30 9 c 12 30 9 c 12

c c 3 3 c c 3 3 c c 3 3 c c 3 3 c c 3 3
c 12 3 24 c 12 3 24 c 12 3 24 c 12 3 24 c 12 3 24

30 30 c c 30 30 c c 30 30 c c 30 30 c c 30 30 c c
30 6 c 21 30 6 c 21 30 6 c 21 30 6 c 21 30 6 c 21

Converting the hexadecimal codes in the second column into binary gives the
following 2p by 2p matrix.

1 0 0 0 0 1
0 0 1 0 0 1
0 0 1 1 0 0
0 1 0 0 1 0
1 1 0 0 0 0
0 0 0 1 1 0

The real-valued eigenvalues of this matrix are 0 and 2 and the respective eigen-
vectors are (-1, 1, -1, 1, -1, 1) and (1, 1, 1, 1, 1, 1). Converting the hexadecimal
codes in the fourth column into binary gives the following 2p by 2p matrix;

0 1 1 0 0 0
0 1 0 0 1 0
0 0 0 0 1 1
1 0 0 1 0 0
0 0 1 1 0 0
1 0 0 0 0 1

The real-valued eigenvalues of this matrix are 0, 2, -1, and 1 and the respec-
tive eigenvectors are (-1, 1, -1, 1, -1, 1), (1, 1, 1, 1, 1, 1), (-2, 1, 1, 1, -2, 1),
and (0, -1, 1, -1, 0, 1). (See the preface of Diamond and Shurman’s [3] book
for a discussion of the relationship between the modularity theorem and a re-
interpretation of the quadratic reciprocity theorem as a system of eigenvalues
on a finite-dimensional complex vector space. Also, see Shurman [4]. The nor-
malized solution counts are given by the Jacobi symbol. Here, 0’s and 1’s give
the solution counts.)

A table of (f1, f2), (f ′1, f ′2), (f ′′1 , f ′′2 ), and (f ′′′1 , f ′′′2 ) values satisfying the above
conditions for f2 ≤ 4000 is;
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(1, 19) (18, 19) (17, 37) (20, 37)
(17, 53) (36, 53) (19, 89) (70, 89)

(251, 629) (378, 629) (127, 1007) (880, 1007)
(127, 757) (630, 757) (503, 1387) (884, 1387)

(269, 1061) (792, 1061) (523, 1853) (1330, 1853)
(233, 1637) (1404, 1637) (1171, 3041) (1870, 3041)
(703, 1873) (1170, 1873) (467, 3043) (2576, 3043)

(1007, 2393) (1386, 2393) (379, 3779) (3400, 3779)
(739, 2719) (1980, 2719) (1241, 4699) (3458, 4699)

The f1, f ′1, f ′′1 , and f ′′′1 values are of the form (1) p2k1, p2k2 + 1, p2k3 + 1 and
p2k4+1, or (2) p2k1, p2k2−1, p2k3−1 and p2k4−1, or (3) p2k1+1, p2k2, p2k3−1
and p2k4 + 2, or (4) p2k1 + 1, p2k2 − 1, p2k3 − 2 and p2k4 + 1, or (5) p2k1 − 1,
p2k2, p2k3 + 1 and p2k4 − 2, or (6) p2k1 − 1, p2k2 + 1, p2k3 + 2 and p2k4 − 1.
The (f1, f2) values (not grouped) are solutions of [(ap + bp)/(a+ b)] = T p. The
(f1, f2) and (f ′′1 , f ′′2 ) values satisfy the conditions of Proposition (28) and the
(f ′1, f ′2) and (f ′′′1 , f ′′′2 ) values satisfy the conditions of Proposition (29).

(30) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b, and
2 (and not p) is a pth power w.r.t. (ap − bp)/(a − b), then one of 107a + 163b,
p(107a + 163b), p2(107a + 163b), ..., pp−1(107a + 163b) is a pth power w.r.t.
(ap − bp)(a − b) and one of 163a + 107b, p(163a + 107b), p2(163a + 107b), ...,
pp−1(163a+107b) is a pth power w.r.t. (ap−bp)/(a−b). (f1, f2) values, f1 < f2,
for which this proposition is true (excluding the (f1, f2) values listed in Propo-
sition (28)) are (107, 163), (323, 433), (397, 683), (719, 901), (487, 703), (701,
971), (1349, 1621), (613, 1207), (1297, 1693), (1961, 3709), (2033, 3203), (2701,
3331), ....

In the following table, the codewords for the above (f1, f2) values are given.
There are two distinct codewords for all a and b that satisfy the above conditions.

3 3 3 3 c c 3 c c 3 c c
c c c c 30 30 c 30 30 c 30 30

(31) If [(ap + bp)/(a+ b)] is a pth power, 2p divides a, b, a− b, or a+ b, 2 (and
not p) is a pth power w.r.t. (ap− bp)/(a− b), and one of 17a+90b, p(17a+90b),
p2(17a + 90b), ..., pp−1(17a + 90b) is a pth power w.r.t. (ap − bp)(a − b), then
one of 90a+ 17b, p(90a+ 17b), p2(90a+ 17b), ..., pp−1(90a+ 17b) is a pth power
w.r.t. (ap − bp)/(a − b). (f1, f2) values, f1 < f2, for which this proposition
is true (excluding the (f1, f2) values listed in Proposition (29) and including
the (f1, f2) values listed in Proposition (30)) are (17, 90), (73, 90), (56, 163),
(107, 163), (71, 252), (181, 252), (110, 433), (323, 433), (37, 360), (323, 360),
(286, 683), (397, 683), (179, 540), (361, 540), (182, 901), (719, 901), (216, 703),
(487, 703), (271, 1190), (919, 1190), .... Note that the (f1, f2) values have been
ordered in the groups of four.

In the following table, the codewords for (f1, f2) values of (17, 90), (73, 90),
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(56, 163), (107, 163), (71, 252), (181, 252), (110, 433), (323, 433), (37, 360),
(323, 360), (286, 683), (397, 683), (179, 540), (361, 540), (182, 901), (719, 901),
(216, 703), (487, 703), (271, 1190), and (1919, 1190) are given. There are 2p
distinct codewords for all a and b that satisfy the above conditions.

12 12 18 3 12 12 18 3 12 12 18 3 12 12 18 3 21 c 24 24
6 6 12 c 6 6 12 c 6 6 12 c 6 6 12 c 9 30 21 21
c c 3 3 c c 3 3 c c 3 3 c c 3 3 c c 3 3

21 21 24 3 21 21 24 3 21 21 24 3 21 21 24 3 12 c 18 18
30 30 c c 30 30 c c 30 30 c c 30 30 c c 30 30 c c
9 9 21 c 9 9 21 c 9 9 21 c 9 9 21 c 6 30 12 c

Converting the hexadecimal codes in the first column into binary gives the fol-
lowing 2p by 2p matrix.

0 1 0 0 1 0
0 0 0 1 1 0
0 0 1 1 0 0
1 0 0 0 0 1
1 1 0 0 0 0
0 0 1 0 0 1

The real-valued eigenvalues of this matrix are 0, 2, -1, and 1.4656 and the re-
spective eigenvectors are (-1, 1, -1, 1, -1, 1), (1, 1, 1, 1, 1, 1), (0, -1, 0, 0, 1, 0),
and (-0.6823, -0.3177, 0.4656, 0.2168, -0.6823, 1). Converting the hexadecimal
codes in the nineteenth column into binary gives the following 2p by 2p matrix;

1 0 0 1 0 0
1 0 0 0 0 1
0 0 0 0 1 1
0 1 1 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0

The real-valued eigenvalues of this matrix are 0, 2, -1, and 1 and the respective
eigenvectors are (-1, 1, -1, 1, -1, 1), (1, 1, 1, 1, 1, 1), (-1, -1, -1, 2, -1, 2), and
(-1, -1, 1, 0, 1, 0).

A table of (f1, f2), (f ′1, f ′2), (f ′′1 , f ′′2 ), and (f ′′′1 , f ′′′2 ) values satisfying the above
conditions for f2 ≤ 4000 is;
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(17, 90) (73, 90) (56, 163) (107, 163)
(71, 252) (181, 252) (110, 433) (323, 433)
(37, 360) (323, 360) (286, 683) (397, 683)

(179, 540) (361, 540) (182, 901) (719, 901)
(216, 703) (487, 703) (271, 1190) (919, 1190)
(270, 971) (701, 971) (431, 1672) (1241, 1672)
(359, 990) (631, 990) (272, 1621) (1349, 1621)

(594, 1207) (613, 1207) (19, 1820) (1801, 1820)
(396, 1693) (1297, 1693) (901, 2990) (2089, 2990)
(71, 1890) (1819, 1890) (1748, 3709) (1961, 3709)

(1170, 3203) (2033, 3203) (863, 5236) (4373, 5236)
(630, 3331) (2701, 3331) (2071, 6032) (3961), 6032)

The f1, f ′1, f ′′1 , and f ′′′1 values are of the form (1) p2k1, p2k2 + 1, p2k3 + 1 and
p2k4+1, or (2) p2k1, p2k2−1, p2k3−1 and p2k4−1, or (3) p2k1+1, p2k2, p2k3−1
and p2k4+2, or (4) p2k1+1, p2k2−1, p2k3−2 and p2k4+1, or (5) p2k1−1, p2k2,
p2k3 + 1 and p2k4− 2, or (6) p2k1− 1, p2k2 + 1, p2k3 + 2 and p2k4− 1. The (f1,
f2) values (not grouped) are solutions of [(ap + bp)/(a+ b)] = T p. The (f1, f2)
and (f ′′1 , f ′′2 ) values satisfy the conditions of Proposition (31). Exactly one of
each pair of (f ′1, f ′2) and (f ′′′1 , f ′′′2 ) values satisfies the conditions of Proposition
(30).

The (f1, f2) values (not grouped) in Proposition (21) (where 2p is a pth power
w.r.t. (ap − bp)/(a − b)), Proposition (24) (where p/2 is a pth power w.r.t.
(ap−bp)/(a−b)), Proposition (26) (where p is a pth power w.r.t. (ap−bp)/(a−b)),
and Propositions (29) and (31) (where 2 is a pth power w.r.t. (ap− bp)/(a− b))
appear to account for all solutions of [(ap+bp)/(a+b)] = T p (and [(ap−bp)/(a−
b)] = T p if negative f1 values are allowed). It appears that there are solutions
of [(ap + bp)/(a+ b)] = T p only if such codewords exist.

(32) If [(ap+bp)/(a+b)] is a pth power, 2p divides a, b, a−b, or a+b, and 2 and
p are pth powers w.r.t. (ap−bp)/(a−b), then a+19b and 19a+b are pth powers
w.r.t. (ap − bp)/(a − b). (f1, f2) values, f1 < f2, for which this proposition is
true are (1, 19), (17, 37), (17, 53), (19, 89), (107, 163), (109, 199), (197, 323),
(323, 433), ....

(33) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b, 2
and p are pth powers w.r.t. (ap − bp)/(a − b), and a + 2b is a pth power w.r.t.
(ap − bp)/(a − b), then 2a + b is a pth power w.r.t. (ap − bp)/(a − b). (f1,
f2) values, f1 < f2, for which this proposition is true (excluding the (f1, f2)
values listed in Proposition (32)) are (1, 2), (18, 19), (20, 37), (36, 53), (70,
89), (17, 90), (73, 90), (56, 163), (90, 199), (71, 252), (181, 252), (19, 308),
(289, 308), (126, 323), (37, 360), (323, 360), (110, 433), .... These (f1, f2)
values combined with the ones in Proposition (32) appear to consist of all the
solutions of [(ap+bp)/(a+b)] = T p, including the ones where 2p does not divide
a, b, a− b, or a+ b.
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4 Mordell’s Conjecture and Faltings’ Theorem

Mordell [5] conjectured that a curve of genus greater than 1 over a number field
has only finitely many rational points and Faltings [6] proved this. A conse-
quence of Faltings’ theorem is a weak form of Fermat’s Last Theorem, that is,
for any n > 4 there are at most finitely many primitive integer solutions of
an + bn = cn since for such n the curve xn + yn = 1 has genus greater than 1.

There are 12816 solutions of [(ap + bp)/(a + b)] = T p for p = 3 when a and
b are less than 5 million (excluding (a, b)=(1, 2)). Of these, there are 1167
solutions that satisfy the conditions of Proposition (32) and 1167 solutions that
satisfy the conditions of Proposition (33) when (ap− bp)/(a− b) has exactly one
distinct prime factor. When (ap − bp)/(a − b) has exactly two distinct prime
factors, there are 339 solutions that satisfy the conditions of Proposition (32),
but only 186 solutions that satisfy the conditions of Proposition (33). When
(ap− bp)/(a− b) has exactly three distinct prime factors, there are 21 solutions
that satisfy the conditions of Proposition (32), but only 2 solutions that satisfy
the conditions of Proposition (33).

The number of solutions of [(ap + bp)/(a + b)] = T p, p = 3, where a and b are
less than or equal to 10000, 20000, 30000, ..., 200000 are 200, 320, 422, 508,
594, 678, 744, 816, 874, 948, 1006, 1066, 1116, 1174, 1232, 1286, 1346, 1388,
1456, and 1500 respectively. For a quadratic least-squares fit of these counts,
SSE=4269, R-square=0.9985, and RMSE=15.85. Let n denote the number of
solutions of [(ap + bp)/(a + b)] = T p, p = 3, less than or equal to a specified
upper bound. In the following, the number of (f1, f2) and (a, b) values such
that f1a+f2b and f2a+f1b are pth powers w.r.t. (ap− bp)/(a− b) are counted.
The (f1, f2) values are just the (a, b) values (in accordance with Propositions
(32) and (33)), so up to n2 combinations of (f1, f2) and (a, b) values may be
considered. If n = 10000, 2p divides a, b, a− b, or a+ b, 2 and p are pth powers
w.r.t. (ap − bp)/(a − b), and (ap − bp)/(a − b) has exactly one distinct prime
factor, then the solution count for each (f1, f2) value is 36. The solution counts
for n equal to 10000, 20000, 30000, ..., 200000 are 36, 51, 58, 67, 77, 85, 92, 103,
107, 116, 120, 127, 131, 140, 144, 149, 154, 159, 171, and 176 respectively. For
a quadratic least-squares fit of these counts, SSE=115.7, R-square=0.9964, and
RMSE=2.609. For n = 10000, a measure of the “density” of these solutions is
(
√

(36 · 200))/200 or about 0.4243. The densities for n = 10000, 20000, 30000,
..., 200000 are 0.4243, 0.3992, 0.3707, 0.3632, 0.3600, 0.3541, 0.3516, 0.3553,
0.3499, 0.3498, 0.3454, 0.3452, 0.3426, 0.3453, 0.3419, 0.3404, 0.3383, 0.3385,
0.3427, and 0.3425 respectively. The densities appear to decrease at about the
same rate as 1/ log(x), x = 2, 3, 4, ..., 20.

If n = 10000, 2p divides a, b, a − b, or a + b, 2 and p are pth powers w.r.t.
(ap − bp)/(a − b), and (ap − bp)/(a − b) has exactly two distinct prime fac-
tors, then the solution count for each (f1, f2) value is 2. If n = 20000, 2p
divides a, b, a − b, or a + b, 2 and p are pth powers w.r.t. (ap − bp)/(a − b),
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and (ap − bp)/(a − b) has exactly two distinct prime factors, then the solution
count for each (f1, f2) value is 6 or 2. The solution counts for n equal to
10000, 20000, 30000, ..., 200000 are (2, 2), (6, 2), (8, 4), (11, 5), (13, 7), (17,
10), (19, 10), (22, 11), (24, 13), (25, 13), (27, 13), (27, 13), (30, 14), (33, 15),
(34, 16), (35, 17), (36, 17), (36, 17), (39, 19), and (40, 20) respectively. For a
quadratic least-squares fit of the larger counts, SSE=11.49, R-square=0.9955,
and RMSE=0.8221. For a quadratic least-squares fit of the smaller counts,
SSE=14.65, R-square=0.9742, and RMSE=0.9282. Let x denote the number
of times the solution count takes the larger value and y the number of times
the solution count takes the smaller value. For n = 20000, a measure of the
density of the solutions is (

√
(6x + 2y))/320 or about 0.1019. The densities

for n = 10000, 20000, 30000, ..., 200000 are 0.1, 0.1019, 0.1118, 0.1169, 0.1224,
0.1340, 0.1314, 0.1330, 0.1371, 0.1327, 0.1307, 0.1269, 0.1298, 0.1319, 0.1319,
0.1321, 0.1300, 0.1280, 0.1312, and 0.1315 respectively. The densities appear to
slowly increase.

When (ap − bp)/(a − b) has only one distinct prime factor, the solutions of
[(ap + bp)/(a + b)] = T p appear to be “closed”. That is, no matter what
upper bound of the (a, b) values that is chosen, there are no solutions of
[(ap+bp)/(a+b)] = T p other than the (f1, f2) values corresponding to (or “gen-
erated by”) the solutions that satisfy the conditions of Propositions (32) and
(33). This is not the case when (ap−bp)/(a−b) has more than one distinct prime
factor. For example, for the 410 smallest solutions of [(ap + bp)/(a + b)] = T p,
a < b, the largest solution is (7812, 28981). The solutions (6697, 10640), (3943,
10640), (4861, 5779), and (918, 5779) are not generated by the solutions that
satisfy Propositions (32) and (33) when (ap − bp)/(a − b) has exactly two dis-
tinct prime factors. Of course, there appear to be infinitely many solutions of
[(ap + bp)/(a+ b)] = T p when p = 3.

(a, b) values that satisfy Proposition (32) or (33) generate themselves. In this
case, a2 + b2 and 2ab (or ab) are pth powers w.r.t. (ap − bp)/(a− b). Note that
this is not necessarily inconsistent with Proposition (12). A less general version
of Proposition (12) is;

If [(ap + bp)/(a+ b)] is a pth power and p is a pth power w.r.t. (ap− bp)/(a− b),
then a is a pth power w.r.t. (ap− bp)/(a− b) if 2p divides a, or b is a pth power
w.r.t. (ap − bp)/(a− b) if 2p divides b, or a− b and a+ b are pth powers w.r.t.
(ap − bp)/(a− b) if 2p divides a− b or a+ b.

When p = 3, (ap− bp)/(a− b) equals a2 +ab+ b2, so the conditions that a2 + b2

and ab are pth powers w.r.t. (ap − bp)/(a − b) are less stringent and reduce to
the condition that ab is a pth power w.r.t. (ap − bp)/(a− b).

If p = 5, 2p divides a, b, a − b, or a + b, and 2 and p are pth powers w.r.t.
(ap−bp)/(a−b), then p2 divides a, b, a−b, or a+b and a, b, a−b, and a+b are
pth powers w.r.t. (ap − bp)/(a− b). When p = 5, there is no “reciprocity” rela-
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tionship, that is, f1a+f2b is a pth power w.r.t. (ap− bp)/(a− b) does not imply
that f2a+ f1b is a pth power w.r.t. (ap− bp)/(a− b). Whether (ap− bp)/(a− b)
has exactly one distinct prime factor is still of significance (by virtue of their
being more plentiful than all the solutions having more than one distinct prime
factor combined). When p = 5 and a and b are less than or equal to 1000,
there are 2037 (a, b) values such that 2p divides a, b, a − b, or a + b, 2 and p
are pth powers w.r.t. (ap − bp)/(a − b), and (ap − bp)/(a − b) has exactly one
distinct prime factor. The (f1, f2) values are then assigned these values and the
numbers of times f1a+f2b and f2a+f1b are pth powers w.r.t. (ap− bp)/(a− b)
are counted. For each (f1, f2) value, the number of solutions ranges from 54 to
122. See Figure 1 for the histogram of the solution counts. Using the estimated
mean and standard deviation (within 95% confidence intervals) gives the normal
probability plot in Figure 2. The linearity of the plot indicates that the data
came from a normal probability distribution. The number of times an (a, b)
value generates itself is 1241. In this case, whether a2 + b2 is a pth power w.r.t.
(ap − bp)/(a − b) is non-trivial. The density (computed similarly to the way it
was for p = 3) is 0.2022.

When p = 5 and a and b are less than or equal to 1000, there are 131 (a, b)
values such that 2p divides a, b, a − b, or a + b, 2 and p are pth powers w.r.t.
(ap−bp)/(a−b), and (ap−bp)/(a−b) has exactly two distinct prime factors. The
(f1, f2) values are then assigned these values. For 109 (f1, f2) values, there are
no instances where f1a+f2b and f2a+f1b are pth powers w.r.t.(ap−bp)/(a−b).
For the remaining (f1, f2) values, the number of solutions is 1 or 2. An (a, b)
value generates itself once. The density is 0.0366 (approximately equal to the
square of the density when (ap− bp)/(a− b) had only one distinct prime factor).

When p = 5 and a and b are less than or equal to 1000, there is 1 (a, b) val-
ues such that 2p divides a, b, a − b, or a + b, 2 and p are pth powers w.r.t.
(ap− bp)/(a− b), and (ap− bp)/(a− b) has exactly three distinct prime factors.
Another approach is to set the (f1, f2) values to this (a, b) value and to the
(a, b) values where (ap − bp)/(a − b) had exactly two distinct primes factors.
The (a, b) values are then set to only the (a, b) values where (ap − bp)/(a− b)
had exactly one distinct prime factor. The numbers of times f1a + f2b and
f2a + f1b are pth powers w.r.t. (ap − bp)/(a − b) are then counted. For each
(f1, f2) value, the number of solutions ranges from 59 to 105. See Figure 3 for
the histogram of the solution counts. Using the estimated mean and standard
deviation (within 95% confidence intervals) gives the normal probability plot in
Figure 4. The linearity of the plot indicates that the data came from a normal
probability distribution. This normal distribution appears to be independent of
the above normal distribution.

If p = 7, 2p divides a, b, a − b, or a + b, and 2 and p are pth powers w.r.t.
(ap − bp)/(a− b), then p2 divides a, b, a− b, or a+ b and a, b, a− b, and a+ b
are pth powers w.r.t. (ap − bp)/(a− b). When p = 7 and a and b are less than
or equal to 700, there are 525 (a, b) values such that 2p divides a, b, a − b, or

21



a + b, 2 and p are pth powers w.r.t. (ap − bp)/(a − b), and (ap − bp)/(a − b)
has exactly one distinct prime factor. The (f1, f2) values are then assigned
these values and the numbers of times f1a + f2b and f2a + f1b are pth powers
w.r.t. (ap − bp)/(a − b) are counted. For each (f1, f2) value, the number of
solutions ranges from 4 to 28. See Figure 5 for the histogram of the solution
counts. Using the estimated mean and standard deviation (within 95% confi-
dence intervals) gives the normal probability plot in Figure 6. The linearity of
the plot indicates that the data came from a normal probability distribution.
The number of times an (a, b) value generates itself is 311. The density is 0.1518.

When p = 7 and a and b are less than or equal to 700, there are 16 (a, b)
values such that 2p divides a, b, a − b, or a + b, 2 and p are pth powers w.r.t.
(ap − bp)/(a− b), and (ap − bp)/(a− b) has exactly two distinct prime factors.
The (f1, f2) values are then assigned these values and the numbers of times
f1a+ f2b and f2a+ f1b are pth powers w.r.t. (ap− bp)/(a− b) are counted. For
15 of the (f1, f2) values, the number of solutions is 0. For the remaining (f1,
f2) value, the number of solutions is 1. This (a, b) value doesn’t generate itself.
The density is 0.0625.

For p = 3, there appear to be solutions of [(ap + bp)/(a+ b)] = T p if and only if
there are generators. For p > 3, there appear to be infinitely many generators
for every p value. For each p value, the generators have characteristics similar
to those for p = 3, the main difference being that there is no ”reciprocity”
relationship for p > 3.

5 Congruence Properties of Prime [(ap− bp)/(a−
b)] when [(ap + bp)] is a pth Power

In this section, more empirical evidence in support of Propositions (8), (12),
and (13) is given. The following propositions are based on data collected for
p = 3, 5, 7, and 11;

(34) If p > 3, p2 divides a, b, a−b, or a+b, [(ap+bp)/(a+b)] and [(ap−bp)/(a−b)]
are primes of the form p2k+1, and 2 is a pth power modulo [(ap+bp)/(a+b)] or
[(ap−bp)/(a−b)], then [(ap−bp)/(a−b)] is a pth power modulo [(ap+bp)/(a+b)]
and [(ap + bp)/(a+ b)] is a pth power modulo [(ap − bp)/(a− b)]. An analogous
result holds for p = 3 if p2 divides a or b or p3 divides a− b or a+ b.

(35) If [(ap − bp)/(a− b)] is prime, qp−1 ≡ 1(mod p2), and q divides a, b, a+ b,
or a− b, then q is a pth power modulo [(ap − bp)/(a− b)].

(36) If p > 3, [(ap − bp)/(a − b)] is prime, and p2 divides a, b, a + b, or a − b,
then p is a pth power modulo [(ap − bp)/(a − b)]. If p = 3, [(ap − bp)/(a − b)]
is prime, and p2 divides a, b, or a+ b or p3 divides a− b, then p is a pth power
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modulo [(ap − bp)/(a− b)].

(37) If [(ap− bp)/(a− b)] is prime, p does not divide q, p divides a and q divides
a, or p divides b and q divides b, or p divides a+ b and q divides a+ b or a− b,
then q is a pth power modulo [(ap − bp)/(a− b)]. If p > 3, [(ap − bp)/(a− b)] is
prime, p does not divide q, p divides a− b, and q divides a+ b or a− b, then q
is a pth power modulo [(ap − bp)/(a− b)]. If p = 3, [(ap − bp)/(a− b)] is prime,
p does not divide q, p2 divides a − b, and q divides a + b or a − b, then q is a
pth power modulo [(ap − bp)/(a− b)].

(38) If p > 3, [(ap − bp)/(a− b)] is a prime of the form p2k + 1, and p2 divides
a, b, a + b, or a − b, then a, b, a + b, a − b, and p are pth powers modulo
[(ap − bp)/(a− b)]. If p = 3, [(ap − bp)/(a− b)] is a prime of the form p2k + 1,
and p2 divides a, b, or a+ b or p3 divides a− b, then a, b, a+ b, a− b, and p are
pth powers modulo [(ap − bp)/(a− b)].

Propositions (35), (36), (37) and Propositions (5) and (6) lead to the following
proposition;

(39) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b, and
[(ap − bp)/(a − b)] is prime, then every factor of a, b, a − b, and a + b is a pth
power modulo [(ap − bp)/(a − b)] (note that this implies [(ap − bp)(a − b)] is a
prime of the form p2k + 1).

Based on data collected for p = 3, generalized versions of Propositions (35),
(36), and (37) are true when [(ap − bp)/(a − b)] = Uk where U is a prime and
p does not divide k. (The propositions would be modified so that the modulus
would be U instead of [(ap− bp)/(a− b)].) This gives the following proposition;

(40) If [(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b, and
[(ap− bp)/(a− b)] = Uk where U is a prime and p does not divide k, then every
factor of a, b, a− b, and a+ b is a pth power modulo U .

6 Wieferich’s Criterion and the “pth Power with
Respect to” Concept

In 1909, Wieferich [7] proved that if ap + bp = cp, p does not divide abc, then
2p−1 ≡ 1(mod p2). Wieferich derived this criterion from very complicated for-
mulas; a simpler approach is to employ the “pth power w.r.t.” concept. The
following proposition is based on data collected for p = 3, 5, 7, and 11;

(41) If p > 3, qp−1 6= 1(mod p2), and q is a pth power w.r.t. (ap + bp)/(a+ b),
then p divides a if q divides a, p divides b if q divides b, or p divides a − b or
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a + b if q divides a − b or a + b. If p = 3, qp−1 6= 1(mod p2), and q is a pth
power w.r.t. (ap+bp)/(a+b), then p divides a−b or a+b if q divides a−b or a+b.

This proposition precludes first-case solutions of Fermat’s equation except when
2p−1 ≡ 1(mod p2) or p = 3 since ap + bp = cp implies cp + bp divides ap + 2bp,
cp + ap divides 2ap + bp, and ap − bp divides cp − 2ap and hence that 2 is a
pth power w.r.t. (cp + bp)/(c+ b), (cp + ap)/(c+ a), and (ap − bp)/(a− b). (If
ap + bp = cp, one of a, b, and c must be even.) Mirimanoff [8] proved that a
first-case solution of Fermat’s equation implies that 3p−1 ≡ 1(mod p2). The
probability that a root of the congruence xp−1 ≡ 1(mod p2), 0 < x < p2, is
one larger than another root is 1/p (since there are p− 1 roots having p(p− 1)
possible values). There then shouldn’t be any p such that 3p−1 ≡ 2p−1 ≡ 1(mod
p2) since the sum of (1/p)(1/p) over all p converges and the only p less than
3x109 such that 2p−1 ≡ 1(mod p2) are 1093 and 3511, and 3p−1 6= 1(mod p2)
for either of these p.

Let ζ be a primitive pth root of unity and K = Q(ζ), a cyclotomic field of degree
p − 1 over Q. Let λ denote 1 − ζ. The following proposition follows from the
Chinese remainder theorem (and has also been confirmed using data collected
for p = 3);

(42) q is a pth power w.r.t. (ap + bp)/(a+ b) if and only if q is congruent to the
pth power of an integer modulo a + ζb, q is congruent to the pth power of an
integer modulo a + ζ2b, q is congruent to the pth power of an integer modulo
a+ ζ3b, ..., and q is congruent to the pth power of an integer modulo a+ ζp−1b
(these are integers in K).

7 Barlow’s Formulas and the “pth Power with
Respect to” Concept

Barlow’s formulas implied by a first-case solution of Fermat’s equation are
(cp− bp)/(c− b) = Rp, (cp−ap)/(c−a) = Sp, (ap+ bp)/(a+ b) = T p, c− b = rp,
c − a = sp, and a + b = tp where rR = a, sS = b, tT = c, and g.c.d.(r,
R)=g.c.d.(s, S)=g.c.d.(t, T )=1. Then a divides Sp − cp−1 and T p − bp−1 and
hence c(f−1)/p ≡ 1(mod f) and b(f−1)/p ≡ 1(mod f) for every prime factor
f of R. (Note that c(f−1)/p ≡ b(f−1)/p(mod f) and cp ≡ bp(mod f) so that
every prime factor of (cp − bp)/(c− b) must be of the form p2k+ 1 [first proved
by Sophie Germain [9]].) Analogous results hold for b and c. There can be
first-case solutions of Fermat’s equation only if c, b, and c − b are pth powers
w.r.t. (cp − bp)/(c− b), c, a, and c− a are pth powers w.r.t. (cp − ap)/(c− a),
a, b, and a + b are pth powers w.r.t. (ap + bp)/(a + b), and every prime fac-
tor of (cp − bp)/(c − b), (cp − ap)/(c − a), and (ap + bp)/(a + b) is of the form
p2k + 1. Also, r divides sp − tp, s divides rp − tp, and t divides rp + sp. If
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n > 2, [(xn + yn)1/n − x]1/n + [(xn + yn)1/n − y]1/n > (x + y)1/n where x
and y are positive real numbers, therefore r + s > t > r, s and hence each of
r, s, and t has a prime factor of the form pk + 1. Also, (ap + bp)/(a + b) =
(a+b)(ap−2−2ap−3b+3ap−4b2−...−(p−1)bp−2)+pbp−1 so that pbp−1 ≡ T p(mod
a+ b).

Barlow’s formulas implied by a second-case solution of Fermat’s equation where
p divides c are (cp− bp)/(c− b) = Rp, (cp−ap)/(c−a) = Sp, (ap+ bp)/(a+ b) =
pT p, c−b = rp, c−a = sp, and a+b = (pkt)p/p where rR = a, sS = b, pktT = c,
and g.c.d.(r, R)=g.c.d.(s, S)=g.c.d.(pkt, T )=1. Then c divides Rp − bp−1 and
Sp − ap−1 and hence b(f−1)/p ≡ 1(mod f) and a(f−1)/p ≡ 1(mod f) for ev-
ery prime factor f of T . Also, b divides pT p − ap−1 and Rp − cp−1 and hence
(pa)(f−1)/p ≡ 1(mod f) and c(f−1)/p ≡ 1(mod f) for every prime factor of
S. Analogous results hold for a. There can be second-case solutions of Fer-
mat’s equation where p divides c only if c, pb, and c − b are pth powers w.r.t.
(cp − bp)/(c− b), c, pa, and c− a are pth powers w.r.t. (cp − ap)/(c− a), a, b,
and p(a+ b) are pth powers w.r.t. (ap + bp)/(a+ b), and every prime factor of
(ap + bp)/(a + b)/p is of the form p2k + 1 (based on these formulas, the prime
factors of (cp − bp)/(c− b) and (cp − ap)/(c− a) are not necessarily of the form
p2k+1). (The requirement that every prime factor of (ap+bp)/(a+b)/p be of the
form p2k+ 1 could be said to be another characteristic property of the equation
ap+bp = cp, p divides c.) Also, p divides ap−2−2ap−3b+3ap−4b2−...−(p−1)bp−2

so that bp−1 ≡ T p(mod a+b) (this is relevant to fractional ideals to be discussed
in the next section). The following proposition is based on data collected for
p = 3, 5, 7, and 11;

(43) If p > 3, a is a pth power w.r.t. (ap + bp)/(a+ b), and p does not divide a,
then ap−1 ≡ 1(mod p2). If p = 3, a is a pth power w.r.t. (ap+ bp)/(a+ b), and p
divides b or a− b or p2 divides a+ b, then ap−1 ≡ 1(mod p2). Analogous results
hold for b. If a − b is a pth power w.r.t. (ap + bp)/(a + b) and p does not di-
vide a−b or a+b, then (a−b)p−1 ≡ 1(mod p2). Analogous results hold for a+b.

Proposition (43) shows that a second-case solution of Fermat’s equation where
p divides c implies ap−1 ≡ 1(mod p2) and bp−1 ≡ 1(mod p2) (avoiding the
constraint that p not divide c in Furtwängler’s first theorem).

8 Furtwängler’s Theorems and Hasse’s Reciprocity
Law

This section requires some familiarity with algebraic number theory. In the fol-
lowing, parentheses sometimes denote the pth power residue symbol. Hasse [10]
used one of his reciprocity laws to give a more systematic proof of Furtwängler’s
theorems. Hasse’s reciprocity law is; (βα )(αβ )−1 = ζTr(η) where η = β−1

p ·
α−1
λ for

all α, β in Q(ζ) with g.c.d.(α, β)=1, α ≡ 1(mod λ), β ≡ 1(mod p), and where
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Tr denotes the trace from Q(ζ) to Q. Setting α to (a+ζb)/(a+b) and β to qp−1

where q divides b gives ( qp−1

[(a+ζb)/(a+b)] ) = ζ−u(p−1)b/(a+b) where u = (qp−1−1)/p

(since α = 1− bλ
a+b ≡ 1(mod λ) and α ≡ 1(mod q)). If ap + bp = cp, p does not

divide c, then α is the pth power of an ideal and hence (βα ) = 1 for all β in Q(ζ)
that are prime to α. Then if p does not divide b, p must divide u.

The question of which of (qp−1 − 1)/p and a + b is divisible by the largest
power of p can be avoided by considering the reciprocal of α. Let f1 de-
note

(
1
0

)
ap−2 −

(
2
1

)
ap−3b +

(
3
2

)
ap−4b2 − ... −

(
p−1
p−2
)
bp−2, f2 denote

(
2
0

)
ap−3 −(

3
1

)
ap−4b+

(
4
2

)
ap−5b2−...+

(
p−1
p−3
)
bp−3, f3 denote

(
3
0

)
ap−4−

(
4
1

)
ap−5b+

(
5
2

)
ap−6b2−

... −
(
p−1
p−4
)
bp−4, ..., and fp−1 denote

(
p−1
0

)
. a+ζ2b

a+ζb ·
a+ζ3b
a+ζ2b · · ·

a+ζpb
a+ζp−1b = a+b

a+ζb .

Collecting terms in the product (1 − bλζ
a+ζb )(1 −

bλζ2

a+ζ2b ) · · · (1 −
bλζp−1

a+ζp−1b ) gives
a+b
a+ζb = 1+(bλf1+b2λ2f2+ ...+bp−1λp−1fp−1)/((ap+bp)/(a+b)). Tr(1) = p−1

and Tr(λk) = p. Set α to a+b
a+ζb . Substituting for Tr(1), Tr(λ), Tr(λ2), ...,

Tr(λp−2) and collecting terms gives Tr((α−1)/λ) = b((p−1)ap−2−(p−2)ap−3b+
(p−3)ap−4b2− ...− bp−2)/((ap+ bp)/(a+ b)). Setting β to qp−1 where q divides

b gives ( qp−1

[(a+b)/(a+ζb)] ) = ζuv where v = b((p − 1)ap−2 − (p − 2)ap−3b + (p −
3)ap−4b2 − ...− bp−2)/((ap + bp)/(a+ b)). If p divides a+ b, then p also divides
(ap + bp)/(a + b). (p − 1)ap−2 − (p − 2)ap−3b + (p − 3)ap−4b2 − ... − bp−2 is
congruent to −(a + b)p−2 modulo p, therefore if p divides a + b, then 1/p does
not divide v.

p = (1− ζ)(1− ζ2)(1− ζ3) · · · (1− ζp−1) and the ideals [1− ζ], [1− ζ2], [1− ζ3],
..., [1 − ζp−1] are equal. If p divides a + b and (ap + bp)/(a + b)/p is a pth

power, then (a+ζ2b)/(1−ζ2)
(a+ζb)/(1−ζ) , (a+ζ3b)/(1−ζ3)

(a+ζ2b)/(1−ζ2) ,
(a+ζ4b)/(1−ζ4)
(a+ζ3b)/(1−ζ3) , ..., (a+ζp−1b)/(1−ζp−1)

(a+ζp−2b)/(1−ζp−2)

are pth powers of fractional ideals and hence a+ζ2b
a+ζb , a+ζ3b

a+ζ2b ,
a+ζ4b
a+ζ3b , ..., a+ζp−1b

a+ζp−2b

are pth powers of fractional ideals. Furthermore, a+ζi+1b
a+ζib = 1 − bλζi

a+ζib =

αi ≡ 1(mod λ), i = 1, 2, 3, ..., p − 2, and hence ( βαi
) = 1 for all β in

Q(ζ) that are prime to αi. Tr( −bζa+ζb )+ Tr( −bζ
2

a+ζ2b )+Tr( −bζ
3

a+ζ3b )+...+Tr( −bζ
p−1

a+ζp−1b )=

b(ap−2 − 2ap−3b+ 3ap−4b2 − ...− (p− 1)bp−2)/((ap + bp)/(a+ b)), therefore if p

divides a+b and (ap+bp)/(a+b)/p is a pth power, then ( qp−1

[(a+b)/(a+ζp−1b)] ) = ζuw

where w = b(ap−2 − 2ap−3b + 3ap−4b2 − ... − (p − 1)bp−2)/((ap + bp)/(a + b)).
ap−2 − 2ap−3b + 3ap−4b2 − ... − (p − 1)bp−2 is congruent to (a + b)p−2 modulo
p, therefore 1/p does not divide w.

Let d, e, f , and g denote (p− 1)bp−2− (p− 2)bp−3a+ (p− 3)bp−4a2− ...− ap−2,
(p−1)ap−2− (p−2)ap−3b+(p−3)ap−4b2− ...−bp−2, ap−2−2ap−3b+3ap−4b2−
... − (p − 1)bp−2, and bp−2 − 2bp−3a + 3bp−4a2 − ... − (p − 1)ap−2 respectively.
Whether p3 divides f or g is pertinent when 2 and p are split and p divides
a+ b. The following proposition is based on data collected for p = 3;
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(44) If 2 divides b, p divides a+ b, and (ap + bp)/(a+ b)/p is a pth power, then
p2 does not divide d (p2 divides d when 2 divides a, etc.), p2 divides e, p2 does
not divide f (p3 divides f when 2 divides a, etc.), and p3 divides g. Analogous
results are valid for a. If 2p divides a+ b and (ap + bp)/(a+ b)/p is a pth power,
then p2 does not divide d, e, f or g.

The above proposition accounts for, in a systematic way, the form of the refor-
mulated version of Furtwängler’s theorems (at least, most of it). If 2 divides b,
p divides a+b, (ap+bp)/(a+b)/p is a pth power, and p2 does not divide d, then
whether p divides uv (where q divides a and u is defined to be (qp−1 − 1)/p)
depends solely on u. However, [ a+b

a+ζp−1b ] is not a pth power of a fractional ideal
in this case.

If 2 divides b, p divides a+ b, (ap + bp)/(a+ b)/p is a pth power, and p2 divides
e, then p divides uv (where q divides b and u is defined to be (qp−1 − 1)/p).
Again, [ a+b

a+ζp−1b ] is not a pth power of a fractional ideal.

If 2 divides b, p divides a+ b, (ap+ bp)/(a+ b)/p is a pth power, and p2 does not
divide f , then whether p divides uw (where q divides b and u is defined to be
(qp−1 − 1)/p) depends solely on u. This allows for the possibility that a/2 is a
pth power modulo p2 (a provision of the reformulated version of Furtwängler’s
theorems). The origin of the condition that a/2 is a pth power modulo p2 is
unknown, but there should be some mechanism to account for the possibility
that 2 is a pth power modulo p2 and apparently this is it. By Proposition (43),
if p = 3, a is a pth power w.r.t. (ap + bp)/(a+ b), and p2 divides a+ b, then a is
a pth power modulo p2. This is not inconsistent with the reformulated version
of Furtwängler’s theorems since p2 cannot divide a+ b when 2 does not divide
a+ b. However, if p > 3 and a is a pth power w.r.t. (ap+ bp)/(a+ b), then a is a
pth power modulo p2 and hence 2 is a pth power modulo p2. By Barlow’s formu-
las, if ap+bp = cp where p divides c, then a is a pth power w.r.t. (ap+bp)/(a+b).

If 2 divides b, p divides a+ b, (ap + bp)/(a+ b)/p is a pth power, and p3 divides
g, then p divides uw (where q divides a and u is defined to be (qp−1 − 1)/p).
Then q is a pth power modulo p2.

The portion of the reformulated version of Furtwängler’s theorems where 2
divides a + b remains unaccounted for. The above proposition is also valid for
multiples of 2, the multiples being factors of a, b, or a + b. When 2 and p are
not split and 2 divides a + b, the multiples consist of powers of 2, powers of p,
and products of primes that are usually not a pth power modulo p2.

9 Vandiver’s Theorem

In 1919, Vandiver [11] proved that if ap + bp = cp, p divides c, then p3 di-
vides c, ap−1 ≡ 1(mod p3), and bp−1 ≡ 1(mod p3). When a is odd, Vandiver’s
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theorem gives a necessary condition for a factor of a to be a pth power w.r.t.
(ap + bp)/(a+ b) (based on data collected for p = 3). Analogous results hold for
b, a−b, and a+b. The following proposition is based on data collected for p = 3;

(45) If [(ap + bp)/(a + b)] = T p and T = Uk where U is a prime and p does
not divide k, 2p divides a, b, a − b, or a + b, 2 does not divide a, q divides
a, and qp−1 ≡ 1(mod p3), then q is a pth power w.r.t. (ap + bp)/(a + b). If
[(ap + bp)/(a + b)] is a pth power, 2p divides a, b, a − b, or a + b, 2 does
not divide a, and q divides a, then q is a pth power w.r.t. (ap + bp)/(a + b)
only if qp−1 ≡ 1(mod p3). Analogous results hold for b, a − b, and a + b. If
[(ap + bp)/(a+ b)] = T p and T = Uk where U is a prime and p does not divide
k, 2 divides a, p does not divide a, q divides a, and every prime factor of q is a
pth power modulo p2, then q is a pth power w.r.t. (ap + bp)/(a+ b). Analogous
results hold for b. If [(ap + bp)/(a + b)] = T p and T = Uk where U is a prime
and p does not divide k, p divides a + b, 2 does not divide a + b, q divides
a+ b, and qp−1 ≡ 1(mod p3), then q is a pth power w.r.t. (ap + bp)/(a+ b). If
[(ap+bp)/(a+b)] is a pth power, p divides a+b, 2 does not divide a+b, q divides
a + b, and p does not divide q, then q is a pth power w.r.t. (ap + bp)/(a + b)
only if qp−1 ≡ 1(mod p3).

10 Euler’s Theorem and “Split” 2 and p

Euler proved that every prime of the form 6k+1 can be represented by x2+3y2.
Let T be a natural number and x, y, and z be integers. If p = 3, every prime
factor of T is of the form 6k + 1 and T has n such distinct prime factors, then
T p of pT p has exactly pn representations of the form (ap + bp)/(a + b). All
representations of pT p must be of the same type, that is, if (ap + bp)/(a+ b) is
one representation, then p divides a+ b, and if ((a′)p+(b′)p)/(a′+ b′) is another
representation, then p must divide a′ + b′. Representations of T p can be of dif-
ferent types, that is, p can divide a, b, or a− b. Suppose p = 3, (ap+ bp)/(a+ b)
is a representation of pT p, and 2 and p are common factors of a+b. When p = 3
and x+y = z, (xp−yp)/(x−y) = (zp+yp)/(z+y) = (zp+xp)/(z+x), so 2 must
divide b′ where b′ = a−b and a′ = a for the representation ((a′)p+(b′)p)/(a′+b′)
of pT p (and p must divide a′ + b′) and 2 must divide a′′ where a′′ = a− b and
b′′ = −b for the representation ((a′′)p + (b′′)p)/(a′′ + b′′) of pT p (and p must
divide a′′ + b′′).

11 A Generalization of Vandiver’s Theorem

There is some evidence that if there is one representation [(ap + bp)/(a+ b)] of
T p for p > 3, there must be other representations. If ap + bp = cp, p divides c,
and every prime factor of (cp − bp)/(c− b) and (cp − ap)/(c− a) is of the form
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p2k + 1, then p3 divides c by Barlow’s formulas (since ap + bp + a + b − 2c =
rp(Rp − 1) + sp(Sp − 1)). Vandiver’s theorem suggests that no prime factor of
(cp − bp)/(c− b) or (cp − ap)/(c− a) can just be of the form pk+ 1. Vandiver’s
theorem can be reformulated so that it is applicable to the problem of deter-
mining if [(ap + bp)/(a + b)] can be a pth power. The following proposition is
based on data collected for p = 3;

(46) If [(ap + bp)/(a + b)] = T p where every prime factor of T is of the form
p2k + 1, p3 divides a, b, or a − b or p4 divides a + b, and 2 does not divide
a, then ap−1 ≡ 1(mod p3). If [(ap + bp)/(a + b)] = T p where T has only one
distinct prime factor, this prime factor is of the form p2k + 1, p3 divides a,
b, or a − b or p4 divides a + b or p3 divides a′, b′, or a′ − b′ or p4 divides
a′ + b′ for some representation [((a′)p + (b′)p)/(a′ + b′)] of T p, and 2 does not
divide a, then ap−1 ≡ 1(mod p3). Analogous results hold for b and a − b. If
[(ap + bp)/(a + b)] = T p where every prime factor of T is of the form p2k + 1,
p3 divides a, b, or a − b or p4 divides a + b, and 2 does not divide a + b, then
[(a + b)/p]p−1 ≡ 1(mod p3) if p divides a + b, or (a + b)p−1 ≡ 1(mod p3) if
does not divide a+ b. If [(ap + bp)/(a+ b)] = T p where T has only one distinct
prime factor, this prime factor is of the form p2k + 1, p3 divides a, b, or a − b
or p4 divides a + b or p3 divides a′, b′, or a′ − b′ or p4 divides a′ + b′ for some
representation [((a′)p + (b′)p)/(a′ + b′)] of T p, and 2 does not divide a+ b, then
[(a+ b)/p]p−1 ≡ 1(mod p3) if p divides a+ b, or (a+ b)p−1 ≡ 1(mod p3) if p does
not divide a+ b. If [(ap + bp)/(a+ b)] = T p where every prime factor of T is of
the form p2k + 1, 2 divides a, and p does not divide a, then (a/2)p−1 ≡ 1(mod
p3). Analogous results hold for b. If [(ap + bb)/(a+ b)] = T p where every prime
factor of T is of the form p2k+ 1, 2 does not divide a, and p divides a+ b, then
ap−1 ≡ 1(mod p3). Analogous results hold for b and a− b.

12 Congruence Properties of Prime Factors of
[(ap+ bp)/(a+ b)] when [(ap+ bp)/(a+ b)] is a pth
Power

That the reformulation of Vandiver’s theorem depends on different representa-
tions of [(ap+bp)/(a+b)] of T p is some indication that different representations
must exist for p > 3 (if there are any representations). Whether p is a pth power
w.r.t. (ap + bp)/(a + b) is of importance to Vandiver’s theorem. The following
propositions are based on data collected for p = 3;

(47) If [(ap + bp)/(a + b)] = T p and T = Uk where U is a prime and p does
not divide k, then p is a pth power w.r.t. (ap + bp)/(a + b) if and only if
p3 divides a, b, or a − b or p4 divides a + b or p3 divides a′, b′ or a′ − b′ or
p4 divides a′ + b′ for some representation [((a′)p + (b′)p)/(a′ + b′)] of T p. If
[(ap + bp)/(a + b)] = T p and T = Uk where U is a prime and p divides k,
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then p is not a pth power w.r.t. (ap + bp)/(a + b). If [(ap + bp)/(a + b)] = T p

where T has two distinct prime factors, 2p divides a, b, a− b, or a+ b, and p is a
pth power w.r.t. (ap+bp)/(a+b), then p3 divides a, b, or a−b or p4 divides a+b.

(48) If [(ap + bp)/(a + b)] is a pth power, then pp−1a is a pth power w.r.t.
(ap + bp)/(a+ b) if 2p divides a, pp−1b is a pth power w.r.t. (ap + bp)/(a+ b) if
2p divides b, pp−1(a− b) and a+ b are pth powers w.r.t. (ap + bp)/(a+ b) if 2p
divides a− b, or a− b and p(a+ b) are pth powers w.r.t. (ap + bp)/(a+ b) if 2p
divides a+ b.

(49) If [(ap + bp)/(a + b)] is a pth power, 2 divides a, and p does not divide a,
then a is a pth power w.r.t. (ap + bp)/(a+ b). Analogous results hold for b.

(50) If [(ap+ bp)/(a+ b)] is a pth power, f is a prime factor of [(ap+ bp)/(a+ b)]
of the form p2k + 1, and p is not a pth power modulo f , then (1) pp−1a, pp−1b,
pp−1(a − b), and a + b are pth powers modulo f if p divides a, b, or a − b, or
(2) a, b, a − b, and p(a + b) are pth powers modulo f if p divides a + b. If
[(ap + bp)/(a+ b)] is a pth power, f is a prime factor of [(ap + bp)/(a+ b)] of the
form p2k+ 1, and p is a pth power modulo f , then a, b, a− b, and a+ b are pth
powers modulo f .

(51) If [(ap+ bp)/(a+ b)] is a pth power, f is a prime factor of [(ap+ bp)/(a+ b)]
not of the form p2k + 1, and p is not a pth power modulo f , then (1) pp−1a, b,
p(a−b), and pp−1(a+b), or pp−1a, pb, a−b, and p(a+b) are pth powers modulo
f if 2p divides a, or (2) a, pp−1b, p(a− b), and pp−1(a+ b), or pa, pp−1b, a− b,
and p(a+ b) are pth powers modulo f if 2p divides b, or (3) a, pb, pp−1(a− b),
and a+ b, or pa, b, pp−1(a− b), and a+ b are pth powers modulo f if 2p divides
a− b, or (4) pa, pp−1b, a− b, and p(a+ b), or pp−1a, pb, a− b, and p(a+ b) are
pth powers modulo f if 2p divides (a+b).

(52) If ([(ap + bp)/(a+ b)] is a pth power, 2 divides a, p does not divide a, f is
a prime factor of [(ap + bp)/(a+ b)] not of the form p2k + 1, and p is not a pth
power modulo f , then a, pb, pp−1(a − b), and a + b, or a, pp−1b, p(a − b), and
pp−1(a+ b) are pth powers modulo f . Analogous results hold for b.

Since Propositions (48), (50), (51), and (52) are based solely on data collected
for p = 3, their form is ambiguous in that the p exponents might be 2 instead
of p− 1. Congruence properties of the prime factors of [(ap − bp)/(a− b)] when
[(ap + bp)/(a+ b)] is a pth power appear to determine the form of Propositions
(48), (50), (51), and (52). (Propositions (48), (50), (51), and (52) can be trans-
formed into Propositions (12), (8), (14), and (9) respectively by multiplying the
a, b, a− b, and a+ b terms by p and switching the a+ b and a− b terms [and of
course the moduli bases]. This is just an attempt to find a simple relationship
between the congruence properties of the prime factors of [(ap+bp)/(a+b)] and
[(ap − bp)/(a− b)] when [(ap + bp)/(a+ b)] is a pth power and has no apparent
logical basis.)
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(53) If [(ap+ bp)/(a+ b)] is a pth power, f is a prime factor of [(ap+ bp)/(a+ b)]
not of the form p2k + 1, and p is a pth power modulo f , then (1) a (and not b,
a− b, or a+ b) is a pth power modulo f if 2 divides a, or (2) b (and not a, a− b
or a+ b) is a pth power modulo f if 2 divides b, or (3) a− b and a+ b (and not
a or b) are pth powers modulo f if 2 divides a− b or a+ b.

As shown previously, ap + bp = cp, p divides c, implies c, pb, and c − b are
pth powers w.r.t. (cp − bp)/(c − b), c, pa, and c − a are pth powers w.r.t.
(cp − ap)/(c − a), and 2 and p are common factors of c (if the reformulated
version of Furtwängler’s theorem is accepted). Then by Propositions (51) and
(53), every prime factor of (cp− bp)/(c− b) and (cp− ap)/(c− a) must be of the
form p2k+ 1. (Substituting c for a and −b for b in Proposition (51) gives pp−1c,
−b, p(c+ b), and pp−1(c− b), or pp−1c, −pb, c+ b and p(c− b) are pth powers
modulo f [a prime factor of (cp − bp)/(c− b)] if 2p divides c and p is not a pth
power modulo f [a contradiction]. Substituting c for a and −b for b in Proposi-
tion (53) gives c [and not c−b] is a pth power modulo f if 2p divides c and p is a
pth power modulo f [a contradiction]. Analogous results follow by substituting
c for a and −a for b in Propositions (51) and (53). Furthermore, by Proposition
(50), p must be a pth power w.r.t. (cp − bp)/(c − b) and (cp − ap)/(c − a). As
shown previously, ap + bp = cp, p divides c, implies a, b, and p(a + b) are pth
powers w.r.t. (ap + bp)/(a + b) and every prime factor of [(ap + bp)/(a + b)] is
of the form p2k + 1. This gives the following proposition;

(54) If ap+bp = cp where p divides c, then every prime factor of (cp−bp)/(c−b) is
of the form p2k+1 and c, b, c−b, c+b, and p are pth powers w.r.t. (cp−bp)/(c−b).
Analogous results hold for (cp − ap)/(c− a). If ap + bp = cp where p divides c,
then every prime factor of [(ap + bp)/(a + b)] is of the form p2k + 1 and a, b,
a− b, and p(a+ b) are pth powers w.r.t. (ap + bp)/(a+ b).

More evidence for the above proposition is given by the following three propo-
sitions (based on data collected for p = 3, 5, and 7);

(55) If every prime factor of [(ap + bp)/(a + b)] is of the form p2k + 1 and p2

divides a, b, a − b, or a + b, then ap−1 ≡ 1(mod p2) if p does not divide a,
bp−1 ≡ 1(mod p2) if p does not divide b, and (a − b)p−1 ≡ 1(mod p2) and
(a+ b)p−1 ≡ 1(mod p2) if p does not divide a− b or a+ b.

(56) If a, pb, and a + b are pth powers w.r.t. (ap + bp)/(a + b) and p2 divides
a, then b, a + b, and a − b are pth powers modulo p2. If p = 3 or 5, a, pb, and
a+ b are pth powers w.r.t. (ap + bp)/(a+ b), and p2 divides a, b, a− b, or a+ b,
then a− b is a pth power w.r.t. (ap + bp)/(a+ b) if and only if p is a pth power
w.r.t. (ap + bp)/(a+ b).

(57) If a, b, and p(a+ b) are pth powers w.r.t. (ap + bp)/(a+ b) and p2 divides a
or b, then a+ b and a− b are pth powers modulo p2. If p = 3, a, b, and p(a+ b)
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are pth powers w.r.t. (ap + bp)/(a+ b), and p2 divides a, b, a− b, or a+ b, then
a− b is a pth power w.r.t. (ap + bp)/(a+ b).

Substituting c for a and −b for b in Proposition (14) gives p2(c − b) is a pth
power modulo f (a prime factor of (cp + bp)/(c+ b) not of the form p2k + 1) if
2p divides c and p/2 is a pth power modulo f , or p(c− b) is a pth power modulo
f if 2p divides c and 2p is a pth power modulo f . Then if c− b is a pth power,
p must be a pth power modulo f and hence by Proposition (7), 2 cannot be a
pth power modulo f (otherwise, 2p would be a pth power modulo f). As shown
previously, ap + bp = cp implies 2 is a pth power w.r.t. (cp + bp)/(c + b). This
gives the following proposition;

(58) If ap+bp) = cp where p divides c, then every prime factor of (cp+bp)/(c+b) is
of the form p2k+1 and c, b, p(c+b), and c−b are pth powers w.r.t. (cp+bp)/(c+b).
Analogous results hold for (cp + ap)/(c+ a).

The following proposition is based on data collected for p = 3;

(59) If [(ap+bp)/(a+b)] is a pth power and f is a prime factor of [(ap+bp)/(a+b)],
then at least one of 2p, 2, p, or p/2 is a pth power modulo f .

The following propositions are based on data collected for p = 3, 5, and 7;

(60) If p is a pth power w.r.t. (ap + bp)/(a+ b), then p2 divides a if p divides a,
p2 divides b if p divides b, or p2 divides a−b if p divides a−b. If p > 3 and p is a
pth power w.r.t. (ap+bp)/(a+b), then p2 divides a+b if p divides a+b. If p = 3
and p is a pth power w.r.t. (ap+bp)/(a+b), then p3 divides a+b if p2 divides a+b.

When p is a pth power w.r.t. (ap+bp)/(a+b) and [(ap+bp)/(a+b)] is not prime,
the “small” prime factors of [(ap+bp)/(a+b)] are not of the form p2k+1. For ex-
ample, of the 2,517 prime factors (not necessarily distinct) of [(ap+bp)/(a+b)] for
the 1,175 (a, b) such that p is a pth power w.r.t. (ap+bp)/(a+b), [(ap+bp)/(a+b)]
is not prime, and 1, 000 ≥ a > b ≥ 1 for p = 7, only 214 prime factors are of
the form p2k+ 1 and the smallest of these prime factors is 15,877. When p = 3
and p is a pth power w.r.t. (ap + bp)/(a + b), the three smallest prime factors
of [(ap + bp)/(a+ b)] of the form p2k + 1 are 73, 271, and 307.

(61) If p = 3, a, b, a − b, and a + b are pth powers w.r.t. (ap + bp)/(a + b),
p2 divides a, b, a− b, or a+ b, and [(ap + bp)/(a+ b)] is not prime, then every
prime factor of [(ap + bp)/(a+ b)] equals [((a′)p + (b′)p)/(a′ + b′)] where p2 di-
vides a′, b′, a′ − b′, or a′ + b′. (The smallest prime factor of [(ap + bp)/(a+ b)]
satisfying these conditions is 73; the requirement that p2 divide a′, b′, a′ − b′,
or a′+b′ eliminates about 2

3 of the primes of the form p2k+1 from consideration.)

For the 13,208,764 (a, b) such that 50, 000 ≥ a > b ≥ 1, a, b, a − b, and a + b
are pth powers w.r.t. (ap + bp)/(a + b), and p2 divides a, b, a − b, or a + b
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for p = 3, the numbers of instances where [(ap + bp)/(a + b)] has 1, 2, 3, and
4 prime factors (not necessarily distinct) are 12,585,008, 615,167, 8,518, and
71 respectively. [(ap + bp)/(a + b)] is a square in 624 instances, a cube in 27
instances, and a fourth power in 3 instances. For larger upper bounds of the a,
b values, the proportions of the numbers of instances where [(ap + bp)/(a + b)]
has 2, 3, and 4 prime factors increase, so there should eventually be a value of
[(ap + bp)/(a+ b)] having 5 or more prime factors.

(62) If p = 3, a, b, a− b, and p(a+ b) are pth powers w.r.t. (ap + bp)/(a+ b), p
is not a pth power w.r.t. (ap + bp)/(a+ b), p2 divides a, b, a− b, or a+ b, and
[(ap + bp)/(a + b)] is not prime, then every prime factor of [(ap + bp)/(a + b)]
equals [((a′)p+ (b′)p)/(a′+ b′)] where p2 does not divide a′, b′, a′− b′, or a′+ b′.

For the 1,316,973 (a, b) such that 25, 000 ≥ a > b ≥ 1, a, b, a − b, and
p(a + b) are pth powers w.r.t. (ap + bp)/(a + b), p is not a pth power w.r.t.
(ap + bp)/(a + b)], and p2 divides a, b, a − b, or a + b for p = 3, the numbers
of instances where [(ap + bp)/(a + b)] has 1, 2, 3, 4, 5, and 6 prime factors are
712,815, 573,912, 29,149, 1,002, 88, and 7 respectively. [(ap + bp)/(a + b)] is a
square in 112 instances, a cube in 9 instances, and a fourth power in 2 instances.

If p = 5, 5, 000 ≥ a > b ≥ 1, a, b, a − b, and a + b are pth powers w.r.t.
(ap + bp)/(a + b), and p2 divides a, b, a − b, or a + b, then [(ap + bp)/(a + b)]
has at most two prime factors. If p = 7, 500 ≥ a > b ≥ 1, a, b, a− b, and a+ b
are pth powers w.r.t. (ap + bp)/(a + b), and p2 divides a, b, a − b, or a + b,
then [(ap + bp)/(a + b)] is prime. If p = 5, 5, 000 ≥ a > b ≥ 1, a, b, a − b,
and p(a+ b) are pth powers w.r.t. (ap + bp)/(a+ b), p is not a pth power w.r.t.
(ap + bp)/(a+ b), and p2 divides a, b, a− b, or a+ b, then [(ap + bp)/(a+ b)] has
at most three prime factors. If p = 7 and 500 ≥ a > b ≥ 1, there do not exist
(a, b) such that a, b, a− b, and p(a+ b) are pth powers w.r.t. (ap + bp)/(a+ b),
p is not a pth power w.r.t. (ap + bp)/(a+ b), and p2 divides a, b, a− b, or a+ b.
For p = 5, the prime factors of [(ap + bp)/(a+ b)] when a, b, a− b, and a+ b are
pth powers w.r.t. (ap+ bp)(a+ b) and p2 divides a, b, a− b, or a+ b are different
from the prime factors of [(ap+bp)/(a+b)] when a, b, a−b, and p(a+b) are pth
powers w.r.t. (ap+ bp)/(a+ b), p is not a pth power w.r.t. (ap+ bp)/(a+ b), and
p2 divides a, b, a − b, or a + b, the same as for p = 3. For p = 3, this was due
to the representations of the prime factors. For p = 5 and 5, 000 ≥ a > b ≥ 1,
there are 25,287 prime values of [(ap + bp)/(a+ b)] where a, b, a− b, and a+ b
are pth powers w.r.t. (ap + bp)/(a + b) and p2 divides a, b, a − b or a + b. For
p = 5 and 5, 000 ≥ a > b ≥ 1, there are no prime values of [(ap + bp)/(a + b)]
where a, b, a− b, and p(a+ b) are pth powers w.r.t. (ap + bp)/(a+ b), p is not
a pth power w.r.t. (ap + bp)/(a + b), and p2 divides a, b, a − b, or a + b. This
is some indication that representations (of the form [(ap + bp)/(a + b)]) of the
prime factors are still relevant for p > 3.
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particulièrement sur le théorème de Fermat, Mém. Acad. R. Sc. de l’Institut
de France, 6, année 1823, Paris, 1827, 1-60. (Results are attributed to So-
phie Germain in a footnote.)

[10] H. Hasse, Bericht über neuere Undersuchungen und Probleme aus der The-
orie der algebraischen Zahlkörper, Teil I: Klassenkörperietheorie. Teil Ia:
Beweise zu Tiel I; Teil II: Reziprozitätsgesetz. 3. Aufl.. Wurzburg Wien:
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