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Abstract

Relationships between the Farey sequence and the Riemann hypothesis
other than the Franel-Landau theorem are discussed.

1 Introduction

The Farey sequence Fx of order x is the ascending series of irreducible fractions
between 0 and 1 whose denominators do not exceed x. In this article, the fraction
0/1 is not considered to be in the Farey sequence. The number of fractions in Fx
is A(x) :=

∑x
i=1 φ(i) where φ is Euler’s totient function. For v = 1, 2, 3, ..., A(x)

let δv denote the amount by which the vth term of the Farey sequence differs
from v/A(x). Franel (in collaboration with Landau) [1] proved that the Riemann

hypothesis is equivalent to the statement that |δ1|+ |δ2|+ ...+ |δA(x)| = o(x
1
2+ε)

for all ε > 0 as x → ∞. The Stieltjes hypothesis states that M(x) = O(x
1
2 )

where M(x) is the Mertens function (M(x) :=
∑x
k=1 µ(k) where µ(k) is the

Möbius function).

2 An Upper Bound of |M(x)|
Lehman [2] proved that

∑x
i=1M(bx/ic) = 1. In general,

∑x
i=1M(bx/(in)c) = 1,

n = 1, 2, 3, ..., x (since bbx/nc/ic = bx/(in)c. Let T denote the x by x matrix
where element (i, j) equals φ(j) if j divides i or 0 otherwise. Let U denote the
matrix obtained from T by element-by-element multiplication of the columns
by M(bx/1c), M(bx/2c), M(bx/3c), ..., M(bx/xc). The sum of the columns of
U then equals A(x). i =

∑
d|i φ(d), so

∑x
i=1M(bx/ic)i (the sum of the rows of

U) equals A(x).

Theorem (1)
∑x
i=1M(bx/ic)i = A(x)

By the Schwarz inequality, A(x)/
√
x(x+ 1)(2x+ 1)/6 is a lower bound of

√∑x
i=1M(bx/ic)2.

For x ≤ 1000000, the “curve” of
∑x
i=1M(bx/ic)2 values has been confirmed to

be mostly linear. Also, for x ≤ 500, the curve of
∑x
i=1M(bx/ic)2 values resem-

bles the curve of 8
∑x
i=1 sgn(M(bx/ic)) values (the latter quantity equals O(x)).
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Conjecture (1)
∑x
i=1M(bx/ic)2 = O(x)

Mertens [3] proved that
∑x
i=1M(bx/ic) log(i) = ψ(x) where ψ(x) denotes the

second Chebyshev function. Let d(i) denote half the number of positive divisors
of i. Replacing φ(j) with log(j) in the T matrix gives a similar result.

Theorem (2)
∑x
i=1M(bx/ic) log(i)d(i) = log(x!)

The following conjecture is based on data collected for x ≤ 10000.

Conjecture (2) log(x!) ≥
∑x
i=1M(bx/ic)2 ≥ ψ(x)

By Stirling’s formula, log(x!) = x log(x)− x+O(log(x)). Since log(x) increases
more slowly than any positive power of x, this is a better upper bound of∑x
i=1M(bx/ic)2 than x1+ε for any ε > 0.

3 An O(x2) Function Similar to A(x)

Mertens [4] proved that
∑G
m=1 φ(m) = 3

π2G
2 + ∆ where |∆| < G( 1

2 logeG +
1
2C + 5

8 ) + 1 and C is Euler’s constant 0.57721.... For a linear least squares fit

of
√∑x

i=1M(bx/ic)i versus x for x = 2, 3, 4, ..., 100000, p1 = 0.5513 with a
95% confidence interval of (0.5513, 0.5513), p2 = 0.2757 with a 95% confidence
interval of (0.2741, 0.2772), SSE=1634, R-square=1, and RMSE=0.1278. Let
k = bx/6c and r = x − 6k. Let g(1), g(2), g(3), g(4), and g(5) equal 1, 2, 4,
6, and 11 respectively. If k > 0 and r = 0, let g(x) = 12k + 23(k(k − 1))/2.
If k > 0 and r = 1, let g(x) = 12k + 23(k(k − 1))/2 + 7 + 6(k − 1). If k > 0
and r = 2, let g(x) = 12k + 23(k(k − 1))/2 + 11 + 9(k − 1). If k > 0 and
r = 3, let g(x) = 12k + 23(k(k − 1))/2 + 17 + 13(k − 1). If k > 0 and r = 4,
let g(x) = 12k + 23(k(k − 1))/2 + 22 + 16(k − 1). If k > 0 and r = 5, let
g(x) = 12k + 23(k(k − 1))/2 + 33 + 22(k − 1).

Conjecture (3) g(x) ≤
∑x
i=1 sgn(M(bx/ic))i.√

g(x) increases almost linearly. For a linear least squares fit of
√
g(x) versus

x for x = 2, 3, 4, ..., 100000, p1 = 0.5652 with a 95% confidence interval
of (0.5652, 0.5652), p2 = 0.2826 with a 95% confidence interval of (0.2809,
0.2843), SSE=1868, R-square=1, and RMSE=0.1367. The step height from the√
g(x) value where r = 0 to the value where r = 1 is approximately equal to

the step height from the
√
g(x) value where r = 4 to the value where r = 5

and the step height from the
√
g(x) value where r = 1 to the value where

r = 2 is approximately equal to the step height from the
√
g(x) value where

r = 3 to the value where r = 4. This accounts for there being essentially four
different step sizes. Similarly,

√∑x
i=1 sgn(M(bx/ic))i increases almost linearly

and there are essentially four different step sizes. For a linear least squares fit of
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√∑x
i=1 sgn(M(bx/ic))i versus x for x = 2, 3, 4, ..., 100000, p1 = 0.5653 with a

95% confidence interval of (0.5653, 0.5653), p2 = 0.2826 with a 95% confidence
interval of (0.2809, 0.2840), SSE=1884, R-square=1, and RMSE=0.1373.

4 An O(x) Function Similar to
√
g(x)

Let mx denote the number of fractions in the Farey sequence of order x before
1
4 and nx the number of fractions between 1

4 and 1
2 . The curve of mx − nx val-

ues resembles that of the Mertens function in that the peaks and valleys occur
roughly at the same places and have about the same heights and depths. Let
h(x) denote

∑x
i=1(nbx/ic −mbx/ic). h(2), h(3), h(4), ..., and h(13) equal 0, 0,

1, 1, 0, 1, 2, 1, 1, 2, 2, and 2 respectively.

Conjecture (4) h(x+ 12) = h(x) + 2

12h(x)2 is approximately equal to g(x). For a linear least squares fit of
√

12h(x)
versus x for x = 2, 3, 4, ..., 100000, p1 = 0.5774 with a 95% confidence interval
of (0.5773, 0.5774), p2 = −0.5776 with a 95% confidence interval of (−0.6383,
−0.517), SSE=23880, R-square=1, and RMSE=1.546. The following conjecture
is based on data collected for x ≤ 10000.

Conjecture (5) ψ(x) ≥
∑x
i=1 |sgn(M(bx/ic))| ≥ 1+

∑x
i=1(nbx/ic−mbx/ic)

2 ≥∑x
i=1 sgn(M(bx/ic)) ≥ h(x) ≥

∑x
i=1 sgn(nbx/ic −mbx/ic)

Also,
∑x
i=1 sgn(M(bx/ic)) is approximately equal to

∑x
i=1 |sgn(nbx/ic−mbx/ic)|.

Conjecture (6) 1 ≥ |
√∑x

i=1 sgn(M(bx/ic))−
√∑x

i=1 |sgn(nbx/ic −mbx/ic)|

5 Corresponding O(x2) Functions and Miscella-
neous

Other conjectures can be formulated where nx −mx plays the role of M(x).

Conjecture (7) If x > 56, g(x) > 12
∑x
i=1(nbx/ic −mbx/ic)i.

Conjecture (8) If x > 78, h(x)2 >
∑x
i=1(nbx/ic −mbx/ic)i.

Conjecture (9)
∑x
i=1(nbx/ic −mbx/ic)i ≥

∑x
i=1 sgn(nbx/ic −mbx/ic)i

Also, upper bounds of partial sums of
∑x
i=1 sgn(M(bx/ic))i can be found.

Conjecture (10) (bx/nc(bx/nc + 1)/2 ≥ −
∑bx/(j+1)c
i=1 sgn(M(bx/ic))i ≥ 0,

j = 1, 2, 3, ..., where n = 2 +
∑j
i=1 |sgn(M(i))|
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The loss in value of
∑bx/2c
i=1 sgn(M(bx/ic))i (compared to

∑x
i=1 sgn(M(bx/ic))i)

is b(x+1)/2c (due to the M(1) value being effectively set to 0). Let d(2) = 0 and
d(3), d(4), d(5), ..., d(14) equal 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, and 1 respectively.
Let d(x+ 12) = d(x) + 1.

Conjecture (11) The gain in value of
∑bx/4c
i=1 sgn(M(bx/ic))i due to effectively

setting M(3) to 0 is d(x).

Let e(2) = e(3) = 0 and e(4), e(5), e(6), ..., e(23) equal 1, 0, 0, 0, 1, 1, 0, 0, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, and 1 respectively. Let e(x+ 20) = e(x) + 1.

Conjecture (12) The gain in value of
∑bx/5c
i=1 sgn(M(bx/ic))i due to effectively

setting M(4) to 0 is e(x).

Let f(2) = f(3) = f(4) = 0 and f(5), f(6), f(7), ..., f(34) equal 1, 0, 0, 0, 0, 1,
1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, and 1 respectively.
Let f(x+ 30) = f(x) + 1.

Conjecture (13) The gain in value of
∑bx/6c
i=1 sgn(M(bx/ic))i due to effectively

setting M(5) to 0 is f(x).

Other gains or losses can be computed similarly. h(x) appears to be related to
d(x).

Conjecture (14) h(x) + d(x), x = 2, 3, 4, ..., equals 0, 1, 1, 1, 1, 2, 2, 2, 2, 3,
3, 3, 3, ....

Let q(2) = q(3) = 0 and q(x), x = 4, 5, 6, ..., equal 1− e(4), 1− e(5), 1− e(6),
1− e(7), 1− e(8), 2− e(9), 2− e(10), 2− e(11), 2− e(12), 2− e(13), 3− e(14),
3− e(15), 3− e(16), 3− e(17), 3− e(18), ...., respectively.

Conjecture (15) 2 +
∑x
i=1 sgn(nbx/ic −mbx/ic) ≥ q(x).
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