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Abstract

Relationships between the Farey sequence and the Riemann hypothesis
other than the Franel-Landau theorem are discussed. Whether a func-
tion similar to Chebyshev’s second function is square-root close to a line
having a slope different from 1 is discussed. The nontrivial zeros of the
Riemann zeta function can be used to approximate many functions in
analytic number theory. For example, it could be said that the nontrival
zeta function zeros and the Möbius function generate in essence the same
function - the Mertens function. A different approach is to start with
a sequence that is analogous to the nontrivial zeros of the zeta function
and follow the same procedure with both this sequence and the nontrivial
zeros of the zeta function to generate in essence the same function. A
procedure for generating such a function is given.

1 Introduction

The Farey sequence Fx of order x is the ascending series of irreducible fractions
between 0 and 1 whose denominators do not exceed x. In this article, the fraction
0/1 is not considered to be in the Farey sequence. Let A(x) denote the number
of fractions in Fx. A(x) =

∑x
i=1 φ(i) where φ is Euler’s totient function. For

v = 1, 2, 3, ..., A(x) let δv denote the amount by which the vth term of the Farey
sequence differs from v/A(x). Franel (in collaboration with Landau) [1] proved
that the Riemann hypothesis is equivalent to the statement that |δ1|+ |δ2|+ ...+
|δA(x)| = o(x

1
2+ε) for all ε > 0 as x→∞. Let M(x) denote the Mertens function

(M(x) =
∑x
i=1 µ(i) where µ(i) is the Möbius function). Littlewood [2] proved

that the Riemann hypothesis is equivalent to the statement that for every ε > 0
the function M(x)x−(1/2)−ε approaches zero as x → ∞. Mertens conjectured
that |M(x)| <

√
x. This was disproved by Odlyzko and te Riele [3].

2 Shorter Intervals of Farey Points

Let r1, r2, ..., rA(x) denote the terms of the Farey sequence of order x and let
h(ξ) denote the number of rv less than or equal to ξ. Kanemitsu and Yoshi-

moto [4] proved that each of the estimates
∑
rv≤1/3(rv − h(1/3)

2A(x) ) = O(x1/2+ε)
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and
∑
rv≤1/4(rv− h(1/4)

2A(x) ) = O(x1/2+ε) is equivalent to the Riemann hypothesis.

Let n = 4, 5, 6, ..., and let j = bn/2c. Let yx(n) denote the number of fractions
less than 1/n and let zx(n) denote the number of fractions greater than 1/n
and less than 2/n in a Farey sequence of order x. (If x ≤ n, set yx to 0. If
x ≤ j, set zx to 0. If x > j and x < n, set zx to x − j. If x = n, set zx to

j − 1 if n is even or j if n is odd.) Franel proved that M(x) =
∑A(x)
v=1 e

2πirv , so
there should be some discernible relationship between M(x) and yx(4)− zx(4).
The “curve” of yx(4) − zx(4) values resembles that of M(x) in that the peaks
and valleys occur roughly at the same places and have about the same heights
and depths. See Figure 1 for a plot of M(x) for x = 1, 2, 3, ..., 5000. See
Figure 2 for a plot of yx(4) − zx(4) for x = 1, 2, 3, ..., 5000. Let hx(n) denote∑x
i=1(zbx/ic(n)− ybx/ic(n)).

Theorem 1. hx+n(n) = hx(n) + b(n− 1)/2c

The value of hx(4)− hx−1(4) is determined by the distribution of the fractions
1/x, 2/x, 3/x, ..., b(x − 1)/2c/x about 1/4. The difference in the number of
fractions after 1/4 and before 1/4 is 0 unless 4 divides x+ 1, in which case it is
1. Similar arguments are applicable for n > 4. While

∑x
i=1M(bx/ic) has only

one value (1),
∑x
i=1(ybx/ic(n) − zbx/ic(n) + b(n − 1)/2c/n) has up to n values.

(For n = 4, these values are 1/2, 1/4, 0, or −1/4.)

3 More Comparisons of M(x) and yx(n)− zx(n)
Let Λ(i) denote the Mangoldt function (Λ(i) equals log(p) if i = pm for some
prime p and some m ≥ 1 or 0 otherwise). Let ψ(x) denote the second Chebyshev
function (ψ(x) =

∑
i≤x Λ(i)). Mertens [5] proved that;

Theorem 2.
∑x
i=1M(bx/ic) log(i) = ψ(x)

Additional comparisons of M(x) and yx(n) − zx(n) can then be made by re-
placing M(bx/ic) by ybx/ic(n) − zbx/ic(n) + b(n − 1)/2c/n in formulas such as∑x
i=1M(bx/ic) log(i) = ψ(x). See Figure 3 for a plot of ψ(x) and

∑x
i=1(ybx/ic(4)−

zbx/ic(4) + 1/4) log(i) for x = 1, 2, 3, ..., 5000 (the prime number theorem
is equivalent to the limit relation limx→∞ψ(x)/x = 1). For a linear least-
squares fit of

∑x
i=1(ybx/ic(4) − zbx/ic(4) + 1/4) log(i) for x = 1, 2, 3, ..., 5000,

p1 = 0.2188 with a 95% confidence interval of (0.2186, 0.219), p2 = 0.9636 with a
95% confidence interval of (0.3775, 1.55), SSE=5.582e+5, R-square=0.9989, and
RMSE=10.57. Let σx(i) denote the sum of positive divisors function (σx(i) =∑
d|i d

x). Let λ(i) denote the Liouville function (λ(1) = 1 or if i = pa11 · · · p
ak
k ,

λ(i) = (−1)a1+...+ak). Let L(x) =
∑
i≤x λ(i). Let H(x) =

∑
i≤x µ(i) log(i).

(H(x)/(x log(x))→ 0 as x→∞ and limx→∞(M(x)/x−H(x)/(x log(x))) = 0.
See pp. 91-92 of Apostol’s [6] book.) Other relationships that are useful for
comparing M(x) and yx(n)− zx(n) are;
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Theorem 3.
∑x
i=1M(bx/ic) log(i)σ0(i)/2 = log(x!)

Theorem 4.
∑x
i=1M(bx/ic)σ0(i) = x

Theorem 5.
∑x
i=1M(bx/ic)σ1(i) = x(x+ 1)/2

Theorem 6.
∑x
i=1M(bx/ic)σ2(i) = x(x+ 1)(2x+ 1)/6

Theorem 7.
∑x
i=1M(bx/ic)Λ(i) = −H(x)

Theorem 8.
∑x
i=1M(bx/ic) where the summation is over i values that are

perfect squares equals L(x)

(See Cox [7] for proofs of Theorems 3 through 8.) See Figure 4 for a plot of
log(x!) and 4.38

∑x
i=1(ybx/ic(4)−zbx/ic(4)+1/4) log(i)σ0(i)/2 (superimposed on

each other) for x = 1, 2, 3, ..., 1000. See Figure 5 for a plot of
∑x
i=1(ybx/ic(5)−

zbx/ic(5) + 2/5)σ0(i) for x = 1, 2, 3, ..., 1000. For a linear least-squares fit of∑x
i=1(ybx/ic(5)−zbx/ic(5)+2/5)σ0(i) for x = 1, 2, 3, ..., 1000, p1 = 0.3734 with

a 95% confidence interval of (0.3731, 0.3738), p2 = 0.1249 with a 95% confidence
interval of (−0.08543, 0.3353), SSE=2863, R-square=0.9998, and RMSE=1.694.
See Figure 6 for a plot of

∑x
i=1(ybx/ic(6)− zbx/ic(6) + 1/3)σ1(i) for x = 1, 2, 3,

..., 200. For a quadratic least-squares fit of
∑x
i=1(ybx/ic(6)−zbx/ic(6)+1/3)σ1(i)

for x = 1, 2, 3, ..., 200, SSE=2.531e+4, R-square=1, and RMSE=11.33. See
Figure 7 for a plot of

∑x
i=1(ybx/ic(7) − zbx/ic(7) + 3/7)σ2(i) for x = 1, 2, 3,

..., 100. For a cubic least-squares fit of
∑x
i=1(ybx/ic(7) − zbx/ic(7) + 3/7)σ2(i)

for x = 1, 2, 3, ..., 100, SSE=1.454e+6, R-square=1, and RMSE=123.1. See
Figure 8 for a plot of 1

x log(x)

∑x
i=1(ybx/ic(4)− zbx/ic(4) + 1/4)Λ(i) for x = 2, 3,

4, ..., 5000. See Figure 9 for a plot of L(x) and
∑x
i=1(ybx/ic(4)−zbx/ic(4)+1/4)

where the summation is over i values that are perfect squares for x = 1, 2, 3,
..., 1000. (Pólya conjectured that L(x) ≤ 0 for x ≥ 2. This was disproved by
Haselgrove [8].)

4 limn→∞(yn(n)− zn(n))/n and Similar Limits

See Figure 10 for a plot of yx(65)− zx(65) for x = 1, 2, 3, ..., 1625. See Figure
11 for a plot of yx(200) − zx(200) for x = 1, 2, 3, ..., 5000. See Figure 12
for a plot of yx(200) − zx(200) for x = 100, 200, 300, ..., 5000. Note that the
values of yx(200) − zx(200) in the x intervals of (100, 200), (200, 300), (300,
400), ..., can be approximated by linear interpolation. For even n, the limits
of (yn/2(n) − zn/2(n))/n, (yn(n) − zn(n))/n, (y3n/2(n) − z3n/2(n))/n, ...., as

n → ∞ appear to be − 1
2 , − 1

4 , − 1
3 , − 1

6 , − 2
5 , − 2

15 , − 31
105 , − 29

140 , − 19
42 , − 41

420 ,
− 76

385 , − 201
1540 , − 751

1430 , − 1109
4004 , − 4436

15015 , − 857
13411 , − 3700

12213 , − 721
17163 , − 738

2897 , .... (these
values are based on data collected for n = 10, 000, 000, 000). 0

1 is considered
to be the first limit. Let δ1(1), δ1(2), δ1(3), ..., denote these limits and let
δm(x), m = 2, 3, 4, ..., denote the limits and m − 1 values that have been
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linearly interpolated between successive limits. See Figure 13 for a plot of∑x
i=1 δ4(bx/ic) for x = 1, 2, 3, ..., 79 (including 0

1 , 20 limits were used). For a
linear least-squares fit of

∑x
i=1 δ4(bx/ic) for x = 1, 2, 3, ..., 79, p1 = −0.1276

with a 95% confidence interval of (−0.1287, −0.1264), p2 = 0.05253 with a 95%
confidence interval of (−8.043e−5, 0.1051), SSE=1.041, R-square=0.9984, and
RMSE=0.1163. See Figure 14 for a plot of

∑x
i=1(δ4(bx/ic) + 0.1276) log(i) for

x = 1, 2, 3, ..., 79. For a linear least-squares fit of
∑x
i=1(δ4(bx/ic)+0.1276) log(i)

for x = 1, 2, 3, ..., 79, SSE=2.415, R-square=0.9949, and RMSE=0.1771. See
Figure 15 for a plot of

∑x
i=1(δ4(bx/ic) + 0.1276)σ0(i) for x = 1, 2, 3, ..., 79.

For a linear least-squares fit of
∑x
i=1(δ4(bx/ic) + 0.1276)σ0(i) for x = 1, 2,

3, ..., 79, SSE=5.123, R-square=0.9892, and RMSE=0.2579. See Figure 16
for a plot of

∑x
i=1(δ4(bx/ic) + 0.1276)σ1(i) for x = 1, 2, 3, ..., 79. For a

quadratic least-squares fit of
∑x
i=1(δ4(bx/ic) + 0.1276)σ1(i) for x = 1, 2, 3, ...,

79, SSE=92.93, R-square=0.9999, and RMSE=1.106. See Figure 17 for a plot of∑x
i=1(δ4(bx/ic)+0.1276)σ2(i) for x = 1, 2, 3, ..., 79. For a cubic least-squares fit

of
∑x
i=1(δ4(bx/ic)+0.1276)σ2(i) for x = 1, 2, 3, ..., 79, SSE=6289, R-square=1,

and RMSE=9.157. See Figure 18 for a plot of log(x!) and 8.7
∑x
i=1(δ4(bx/ic) +

0.1276) log(i)σ0(i)/2 (superimposed on each other) for x = 1, 2, 3, ..., 79. See
Figure 19 for a plot of 1

x log(x)

∑x
i=1(δ4(bx/ic) + 0.1276)Λ(i) for x = 2, 3, 4, ...,

79.

5 An Analogue of ψ(x)

A reformulation of the Riemann hypothesis is that ψ(x) is essentially square-root
close to the function f(x) = x. See Figure 20 for a plot of

√
0.17x, −

√
0.17x,

and ψ(x)− x for x = 1, 2, 3, ..., 999. See Figure 21 for a plot of
∑x
i=1 δ1(bx/ic)

and
∑x
i=1 δ1(bx/ic)Λ(i) for x = 1, 2, 3, ..., 999 (these values were computed

using 1000 approximate limits accurate to about 6 decimal places). For a lin-
ear least-squares fit of

∑x
i=1 δ1(bx/ic) for x = 1, 2, 3, ..., 999, p1 = −0.1704

with a 95% confidence interval of (−0.1706, −0.1703), p2 = 0.04535 with a 95%
confidence interval of (−0.03865, 0.1293), SSE=455.6, R-square=0.9998, and
RMSE=0.676. For a linear least-squares fit of

∑x
i=1 δ1(bx/ic)Λ(i) for x = 1, 2,

3, ..., 999, p1 = −0.17 with a 95% confidence interval of (−0.1705, −0.1695),
p2 = 0.2791 with a 95% confidence interval of (−0.009398, 0.5676), SSE=5374,
R-square=0.9978, and RMSE=2.322. See Figure 22 for a plot of

√
0.17x,

−
√

0.17x, and 0.17x+
∑x
i=1(δ1(bx/ic)Λ(i) for x = 1, 2, 3, ..., 999. ψ(x) appears

to deviate from x more than
∑x
i=1 δ1(bx/ic)Λ(i) deviates from −0.17x. See Fig-

ure 23 for a plot of the p1 values of the linear least-squares fits of
∑x
i=1 δ1(bx/ic),∑x

i=1 δ2(bx/ic),
∑x
i=1 δ3(bx/ic), ...,

∑x
i=1 δ40(bx/ic) for respective x values up

to 999, 1999, 2999, ..., 39999. See Figure 24 for a plot of the corresponding p2
values. Denote these p1 and p2 values by p1(n) and p2(n), n = 1, 2, 3, ..., 40.
See Figure 25 for a plot of

√
−np1(n) versus log(n) for n = 1, 2, 3, ..., 40. For a

linear least-squares fit of these quantities, p1 = 0.2208 with a 95% confidence in-
terval of (0.219, 0.2226), p2 = 0.4146 with a 95% confidence interval of (0.4093,
0.4198), SSE=0.0009158, R-square=0.9994, and RMSE=0.004909. See Figure
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26 for a plot of np2(n) for n = 1, 2, 3, ..., 40. For a quadratic least-squares fit of
np2(n) for n = 1, 2, 3, ..., 40, p1 = 0.0004067 with a 95% confidence interval of
(0.0003452, 0.0004683), p2 = 0.08821 with a 95% confidence interval of (0.0856,
0.09081), p3 = −0.1282 with a 95% confidence interval of (−0.1513, −0.105),
SSE=0.01937, R-square=0.9997, and RMSE=0.02288.

See Figure 27 for a plot of the p1 values of the linear least-squares fits of∑x
i=1 δ1(bx/ic)Λ(i),

∑x
i=1 δ2(bx/ic)Λ(i),

∑x
i=1 δ3(bx/ic)Λ(i), ...,

∑x
i=1 δ40(bx/ic)Λ(i)

for respective x values up to 999, 1999, 2999, ..., 39999. (The p1 values are the
same as the above p1 values for the first three or four decimal places.) See Figure
28 for a plot of the corresponding p2 values (the values are erratic, possibly due
to the small number of approximate limits used). Denote these p1 and p2 values
by p′1(n) and p′2(n), n = 1, 2, 3, ..., 40. See Figure 29 for a plot of

√
−np′1(n) ver-

sus log(n) for n = 1, 2, 3, ..., 40. For a linear least-squares fit of these quantities,
p1 = 0.2209 with a 95% confidence interval of (0.2191, 0.2227), p2 = 0.4145 with
a 95% confidence interval of (0.4092, 0.4198), SSE=0.0009235, R-square=0.9994,
and RMSE=0.00493. See Figure 30 for a plot of np′2(n) for n = 1, 2, 3, ..., 40.
For a linear least-squares fit of np′2(n) for n = 1, 2, 3, ..., 40, p1 = 0.6569 with a
95% confidence interval of (0.6251, 0.6886), p2 = −0.3898 with a 95% confidence
interval of (−1.137, 0.3578), SSE=49.89, R-square=0.9788, and RMSE=1.146.

See Figure 31 for a plot of
∑x
i=1 δ100(bx/ic) and

∑x
i=1 δ100(bx/ic)Λ(i) (su-

perimposed on each other) for x = 1, 2, 3, ..., 99999. For a linear least-
squares fit of

∑x
i=1 δ100(bx/ic) for x = 1, 2, 3, ..., 99999, p1 = −0.01936

with a 95% confidence interval of (−0.01936, −0.01936), p2 = 0.1094 with a
95% confidence interval of (0.1034, 0.1154), SSE=2.347e+4, R-square=1, and
RMSE=0.4845. For a linear least-squares fit of

∑x
i=1 δ100(bx/ic)Λ(i) for x = 1,

2, 3, ..., 99999, p1 = −0.01936 with a 95% confidence interval of (−0.01936,
−0.01936), p2 = 0.6391 with a 95% confidence interval of (0.6198, 0.6583),
SSE=2.415e+5, R-square=1, and RMSE=1.554. See Figure 32 for a plot of
1
10

√
0.01936x, 0.01936x+

∑x
i=1 δ100(bx/ic), and 0.01936x+

∑x
i=1 δ100(bx/ic)Λ(i)

for x = 1, 2, 3, ..., 20000. The peaks and valleys of the two corresponding curves
occur at about the same places.

For a linear least-squares fit of
∑x
i=1 δ500(bx/ic) for x = 1, 2, 3, ..., 50000,

p1 = −0.005467 with a 95% confidence interval of (−0.005467, −0.005467),
p2 = 0.1394 with a 95% confidence interval of (0.1354, 0.1435), SSE=2664, R-
square=1, and RMSE=0.2308. For a linear least-squares fit of

∑x
i=1 δ500(bx/ic)Λ(i)

for x = 1, 2, 3, ..., 50000, p1 = −0.005469 with a 95% confidence interval
of (−0.005469, −0.005469), p2 = 0.5193 with a 95% confidence interval of
(0.5138, 0.5249), SSE=5027, R-square=1, and RMSE=0.3171. See Figure 33
for a plot of 1

10

√
0.005469x, 0.005467x +

∑x
i=1 δ500(bx/ic), and 0.005469x +∑x

i=1 δ500(bx/ic)Λ(i) for x = 1, 2, 3, ..., 20000. The peaks and valleys of the
curves in this plot resemble the peaks and valleys of the curves in the first fifth of
Figure 32. See Figure 34 for a comparison of the 0.01936x+

∑x
i=1 δ100(bx/ic) and

0.005467x+
∑x
i=1 δ500(bx/ic) values (each successive 0.01936x+

∑x
i=1 δ100(bx/ic)
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value has been written 5 times). The two curves are almost the same. See Figure
35 for a comparison of the 0.01936x +

∑x
i=1 δ100(bx/ic)Λ(i) and 0.005469x +∑x

i=1 δ500(bx/ic)Λ(i) values (each successive 0.01936x +
∑x
i=1 δ100(bx/ic)Λ(i)

value has been written 5 times). The two curves are roughly the same.

For a linear least-squares fit of
∑x
i=1 δ2500(bx/ic) for x = 1, 2, 3, ..., 50000,

p1 = −0.001414 with a 95% confidence interval of (−0.001414, −0.001414),
p2 = 0.1175 with a 95% confidence interval of (0.1156, 0.1194), SSE=597.2, R-
square=1, and RMSE=0.1093. For a linear least-squares fit of

∑x
i=1 δ2500(bx/ic)Λ(i)

for x = 1, 2, 3, ..., 50000, p1 = −0.001416 with a 95% confidence interval
of (−0.001416, −0.001416), p2 = 0.5083 with a 95% confidence interval of
(0.5072, 0.5094), SSE=208.3, R-square=1, and RMSE=0.06454. See Figure
36 for a plot of 1

10

√
0.001416x, 0.001414x+

∑x
i=1 δ2500(bx/ic), and 0.001416x+∑x

i=1 δ2500(bx/ic)Λ(i) for x = 1, 2, 3, ..., 20000. The peaks and valleys of the
curves in this plot resemble the peaks and valleys of the curves in the first fifth of
Figure 33. See Figure 37 for a comparison of the 0.005467x+

∑x
i=1 δ500(bx/ic)

values and 0.001414x+
∑x
i=1 δ2500(bx/ic) values (each successsive 0.005467x+∑x

i=1 δ500(bx/ic) value has been written 5 times). The two curves are almost the
same. See Figure 38 for a comparison of 0.005469x+

∑x
i=1 δ500(bx/ic)Λ(i) and

0.001416x+
∑x
i=1 δ2500(bx/ic)Λ(i) values (each 0.005469x+

∑x
i=1 δ500(bx/ic)Λ(i)

value has been written 5 times). The two curves are roughly the same.

−p′1(10) equals 0.08617. See Figure 39 for a plot of
√

0.08617x and 0.08617x+∑x
i=1 δ10(bx/ic)Λ(i) for x = 1, 2, 3, ..., 20. For this range of x values (up to

2 · 10),
√

0.08617x is greater than 0.08617x +
∑x
i=1 δ10(bx/ic)Λ(i). See Figure

40 for a plot of
√

0.01936x and 0.01936x +
∑x
i=1 δ100(bx/ic)Λ(i) for x = 1, 2,

3, ..., 200. For this range of x values (up to 2 · 100),
√

0.01936x is greater than
0.01936x+

∑x
i=1 δ100(bx/ic)Λ(i). This appears to be the case for arbitrary p′1(n)

values and corresponding ranges of x values.

Conjecture 1.
√
−p′1(n)x > −p′1(n)x+

∑x
i=1 δn(bx/ic)Λ(i) for x = 1, 2, 3, ...,

2n and n = 1, 2, 3, ....

0.17x +
∑x
i=1 δ1(bx/ic)Λ(i) may eventually exceed

√
0.17x. (Using 13000 ap-

proximate limits accurate to about 3 decimal places gives a p′1 value of −0.1695
and a p′2 value of −1.693 for a linear least-squares fit of

∑x
i=1 δ1(bx/ic)Λ(i),

x = 1, 2, 3, ..., 12999. See Figure 41 for a plot of
√

0.1695x, −
√

0.1695x, and
0.1695x +

∑x
i=1 δ1(bx/ic)Λ(i), x = 1, 2, 3, ..., 12999.) As previously shown,√

−p′1(n) ≈ (0.2209 log(n) + 0.4145)/
√
n, n = 1, 2, 3, .... The ratio of this

value for n = 100 to the value for n = 1 is approximately 0.338 (0.14/0.4145),
but based on the above empirical evidence, the −p′1(1)x +

∑x
i=1 δ1(bx/ic)Λ(i)

values are ”stretched” by a factor of 100 to approximately give the −p′1(100)x+∑x
i=1 δ100(bx/ic)Λ(i) values. See Figure 42 for a plot of

√
−p′1(1)x, −

√
−p′1(1)x,√

−p′1(100)x, −
√
−p′1(100)x, −p′1(1)x+

∑x
i=1 δ1(bx/ic)Λ(i), and −p′1(100)x+∑x

i=1 δ100(bx/ic)Λ(i) for x = 1, 2, 3, ...., 999. If −p′1(n)x+
∑x
i=1 δn(bx/ic)Λ(i)
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is O(
√
x), it should be possible to use this technique to find a

√
−p′1(n)x upper

bound.

6 Convolutions Involving Ramanujan’s Sum

Let ck(x) denote Ramanujan’s sum (ck(x) =
∑
m mod k,(m,k)=1e

2πimx/k).

Conjecture 2.
∑x
i=1(ybx/ic(n)− zbx/ic(n) + b(n− 1)/2c/n)ck(i) is a periodic

function with period nk.

See Figure 43 for a plot of
∑x
i=1(ybx/ic(n) − zbx/ic(n) + b(n − 1)/2c/n)ck(i)

where n = 13, k = 13, and x = 1, 2, 3, ..., 169 and
∑x
i=1(ybx/ic(n)− zbx/ic(n) +

b(n − 1)/2c/n) where n = 169 and x = 1, 2, 3, ..., 169. See Figure 44 for a
plot of

∑x
i=1(ybx/ic(n)− zbx/ic(n) + b(n− 1)/2c/n)ck(i) where n = 12, k = 10,

and x = 1, 2, 3, ..., 120 and
∑x
i=1(ybx/ic(n)− zbx/ic(n) + b(n− 1)/2c/n) where

n = 120 and x = 1, 2, 3, ..., 120. See Figure 45 for a plot of the real parts of the
Fourier coefficients of

∑x
i=1(ybx/ic(n) − zbx/ic(n) + b(n − 1)/2c/n)ck(i) where

n = 4, k = 19, and x = 1, 2, 3, ..., 76.

See Figure 46 for a plot of
∑x
i=1M(bx/ic)ck(i) where k = 150 and x = 1, 2, 3,

..., 300.

Conjecture 3.
∑x
i=1M(bx/ic)ck(i) = φ(k) for x ≥ k.

See Figure 47 for a plot of
∑x
i=1 ck(bx/ic) for k = 17 and x = 1, 2, 3, ..., 500.

Conjecture 4. When k is prime, the
∑x
i=1 ck(bx/ic), x = 1, 2, 3, ..., values

fall on the line segments y = −x′ + kn, 0 < x′ < (n + 1)k2, n = 0, 1, 2, .... If
k > 2, at least one value falls on every line segment.

See Figure 48 for a plot of
∑x
i=1 ck(bx/ic) for k = 7 and x = 1, 2, 3, ...,

10000. For a linear least-squares fit of
∑x
i=1 ck(bx/ic) for k = 7 and x = 1,

2, 3, ..., 10000, p1 = −0.7868 with a 95% confidence interval of (−0.787,
−0.7866), p2 = −0.2229 with a 95% confidence interval of (−1.563, 1.118),
SSE=1.169e+7, R-square=0.9998, and RMSE=34.19. See Figure 49 for a plot
of

∑x
i=1(ck(bx/ic) + 0.7868) log(i) for k = 7 and x = 1, 2, 3, ..., 2000. For a

linear least-squares fit of
∑x
i=1(ck(bx/ic) + 0.7868) log(i) for k = 7 and x = 1,

2, 3, ..., 2000, SSE=6.434e+6, R-square=0.924, and RMSE=56.75. For such
convolutions with log(i) and σ0(i), the points are typically scattered when k is
prime, accounting for the relatively poor linear least-squares fits. See Figure 50
for a plot of

∑x
i=1(ck(bx/ic) + 0.7868)σ1(i) for k = 7 and x = 1, 2, 3, ..., 2000.

For a quadratic least-squares fit of
∑x
i=1(ck(bx/ic) + 0.7868)σ1(i) for k = 7 and

x = 1, 2, 3, ..., 2000, SSE=5.623e+9, R-square=0.9999, and RMSE=1678.

See Figure 51 for a plot of
∑x
i=1 ck(bx/ic) for k = 6 and x = 1, 2, 3, ...,
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10000. For a linear least-squares fit of
∑x
i=1 ck(bx/ic) for k = 6 and x =

1, 2, 3, ..., 10000, p1 = 0.1862 with a 95% confidence interval of (.1861,
0.1863), p2 = 0.1341 with a 95% confidence interval of (−0.2456, 0.5139),
SSE=9.379e+5, R-square=0.9997, and RMSE=9.686. See Figure 52 for a plot
of

∑x
i=1(ck(bx/ic) − 0.1862)σ0(i) for k = 6 and x = 1, 2, 3, ..., 2000. For a

linear least-squares fit of
∑x
i=1(ck(bx/ic)− 0.1862)σ0(i) for k = 6 and x = 1, 2,

3, ..., 2000, SSE=1.419e+6, R-square=0.9821, and RMSE=26.65. See Figure 53
for a plot of

∑x
i=1(ck(bx/ic)− 0.1862)σ2(i) for k = 6 and x = 1, 2, 3, ..., 2000.

For a cubic least-squares fit of
∑x
i=1(ck(bx/ic) − 0.1862)σ2(i) for k = 6 and

x = 1, 2, 3, ..., 2000, SSE=5.281e+13, R-square=1, and RMSE=1.627e+5. See
Figure 54 for a plot of 2.65

∑x
i=1(ck(bx/ic) − 0.1862) log(i)σ0(i)/2 and log(x!)

(superimposed on each other) for k = 6 and x = 1, 2, 3, ..., 2000. See Figure 55
for a plot of x

log(x)

∑x
i=1(ck(bx/ic) − 0.1862)Λ(i) for k = 6 and x = 2, 3, 4, ...,

2000.

See Figure 56 for a plot of
∑x
i=1 ck(bx/ic)M(i) for k = 6 and x = 1, 2, 3, ...,

1000. See Figure 57 for a plot of
∑x
i=1 ck(bx/ic)(yi(n)− zi(n)) for k = 6, n = 4,

and x = 1, 2, 3, ..., 1000. The oscillations of these two functions appear to be
due to the first non-trivial zero of the Riemann zeta function. See Figure 58 for
a plot of

∑x
i=1(ck(bx/ic) + 1)(yi(n) − zi(n)) for k = 17, n = 50, and x = 1, 2,

3, ..., 1500.

7 Convolutions Involving Gauss Sums Associ-
ated with Dirichlet Characters

χ2(n) for n = 1, 2, 3, ..., 7 (a Dirichlet character mod 7) equal 1, ω2, ω, −ω,
−ω2, −1, and 0 respectively where ω = eπi/3. Let G(n, χ) denote the Gauss sum

associated with the Dirichlet character χ (G(n, χ) =
∑k
m=1 χ(m)e2πimn/k). See

Figure 59 for a plot of the real and imaginary components of
∑x
i=1G(bx/ic, χ)

for χ3 mod 7 and x = 1, 2, 3, ..., 10000. For a linear least-squares fit of the
real components, p1 = −0.9076 with a 95% confidence interval of (−0.9077,
−0.9075), p2 = −0.5372 with a 95% confidence interval of (−1.155, 0.0835),
SSE=2.481e+6, R-square=1, and RMSE=15.75. For a linear least-squares fit
of the imaginary components, p1 = 0.8163 with a 95% confidence interval of
(0.8163, 0.8164), p2 = 0.434 with a 95% confidence interval of (0.0005784,
0.8675), SSE=1.222e+6, R-square=1, and RMSE=11.06. See Figure 60 for
a plot of the real components of

∑x
i=1(G(bx/ic, χ) + 0.9076) log(i) for x = 1, 2,

3, ..., 10000. For a linear least-squares fit of the real components, p1 = −0.7917
with a 95% confidence interval of (−0.7921, −0.7913), p2 = 0.2297 with a
95% confidence interval of (−2.059, 2.519), SSE=3.407e+7, R-square=0.9993,
and RMSE=58.38. See Figure 61 for a plot of the imaginary components of∑x
i=1(G(bx/ic, χ)− 0.8163) log(i) for x = 1, 2, 3, ..., 10000. For a linear least-

squares fit of the imaginary components, p1 = 0.4265 with a 95% confidence
interval of (0.4262, 0.4268), p2 = −0.5898 with a 95% confidence interval of
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(−2.109, 0.9297), SSE=1.502e+7, R-square=0.999, and RMSE=38.76. See Fig-
ure 62 for a plot of the real components of

∑x
i=1(G(bx/ic, χ) + 0.9076)σ1(i)

for x = 1, 2, 3, ..., 1000. For a quadratic least-squares fit of the real com-
ponents, p1 = −0.5349 with a 95% confidence interval of (−0.5355, −0.5344),
p2 = −0.5832 with a 95% confidence interval of (−1.132, −0.03472), p3 = 6.08
with a 95% confidence interval of (−112.8, 125), SSE=4.049e+8, R-square=1,
and RMSE=637.3. (Note that the p1 and p2 values are almost equal.) See Figure
63 for a plot of the imaginary components of

∑x
i=1(G(bx/ic, χ) − 0.8163)σ1(i)

for x = 1, 2, 3, ..., 1000. For a quadratic least-squares fit of the imaginary
components, p1 = 0.1821 with a 95% confidence interval of (0.1818, 0.1824),
p2 = 0.1867 with a 95% confidence interval of (−0.129, 0.5024), p3 = −0.6871
with a 95% confidence interval of (−69.11, 67.73), SSE=1.341e+8, R-square=1,
and RMSE=366.8.

For a linear least-squares fit of the real components of
∑x
i=1G(bx/ic, χ) for a

Dirichlet character mod 13 and x = 1, 2, 3, ..., 10000, p1 = −1.247 with a 95%
confidence interval of (−1.247, −1.247), p2 = −0.7454 with a 95% confidence
interval of (−1.438, −0.05244), SSE=3.123e+6, R-square=1, and RMSE=17.67.
For a linear least-squares fit of the imaginary components, p1 = 0.08855 with
a 95% confidence interval of (0.08847, 0.08863), p2 = 0.004716 with a 95%
confidence interval of (−0.4692, 0.4787), SSE=1.461e+6, R-square=0.9978, and
RMSE=12.09. See Figure 64 for a plot of the real components of

∑x
i=1(G(bx/ic, χ)+

1.247) log(i)σ0(i)/2 for the Dirichlet character mod 13, the imaginary compo-
nents of

∑x
i=1(G(bx/ic, χ) − 0.08855) log(i)σ0(i)/2 for the Dirichlet character

mod 13, −1.25 log(x!), and −0.2289 log(x!) for x = 1, 2, 3, ..., 1000.

8 Limits Associated with Convolutions of Gauss
Sums Associated with Dirichlet Characters

χ2(n) for n = 1, 2, 3, ..., 11 (a Dirichlet character mod 11) equal 1, ω, −ω3, ω2,
ω4, −ω4, −ω2, ω3, −ω, −1, and 0 respectively where ω = eπi/5. See Figure 65 for
a plot of the real and imaginary components of

∑x
i=1(ybx/ic(n)−zbx/ic(n)+b(n−

1)/2c/n)G(i, χ) where n = 200, χ is the Dirichlet character mod 11, and x = 1,
2, 3, ..., 2000. See Figure 66 for a plot of the real components of

∑x
i=1(ybx/ic(n)−

zbx/ic(n)+b(n−1)/2c/n)G(i, χ) where n = 40, χ is the Dirichlet character mod
11, and x = 1, 2, 3, ..., 100 superimposed on a plot of the replicated (two times)
real components of 2

∑x
i=1(ybx/ic(n)− zbx/ic(n) + b(n− 1)/2c/n)G(i, χ) where

n = 20, χ is the Dirichlet character mod 11, and x = 1, 2, 3, ..., 50 . The two
curves are roughly the same. See Figure 67 for a plot of the real components
of 1

n

∑x
i=1(ybx/ic(n)− zbx/ic(n) + b(n− 1)/2c/n)G(i, χ) where n = 400, χ is the

Dirichlet character mod 11, and x = n, 2n, 3n, ..., 100n superimposed on a plot
of the real components of 1

n

∑x
i=1(ybx/ic(n)− zbx/ic(n) + b(n− 1)/2c/n)G(i, χ)

where n = 200, χ is the Dirichlet character mod 11, and x = n, 2n, 3n, ...,
100n. As n → ∞, the real (and imaginary) components of 1

n

∑x
i=1(ybx/ic(n)−
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zbx/ic(n) + b(n − 1)/2c/n)G(i, χ), x = n, 2n, 3n, ..., where χ is the Dirichlet
character mod 11 appear to approach limits. For n = 10, 000, 000, these val-
ues are 0.4776508, 0.3240762, 0.8212111, −0.4973424, −0.06077291, 0.6700821,
0.8753683, −0.1347543, 0.4056038, −0.3244519, 0.3555685, 0.5669565, 0.8245811,
0.1917227, −0.0002897262, −0.6083173, 0.6168052, 0.8068949, 0.4895114, −0.2735334,
.... Let ε1(1), ε1(2), ε1(3), ..., denote these approximate limits and let εm(x),
m = 2, 3, 4, ..., denote the limits and m−1 values that have been linearly inter-
polated between successive limits. See Figure 68 for a plot of

∑x
i=1 ε10(bx/ic)

for x = 1, 2, 3, ..., 2000 (201 limits were used). For a linear least-squares
fit of

∑x
i=1 ε10(bx/ic) for x = 1, 2, 3, ..., 2000, p1 = 0.449 with a 95% confi-

dence interval of (0.4489, 0.4491), p2 = 0.02979 with a 95% confidence interval
of (−0.06429, 0.1239), SSE=2297, R-square=1, and RMSE=1.072. See Fig-
ure 69 for a plot of

∑x
i=1(ε10(bx/ic) − 0.449) log(i) for x = 1, 2, 3, ..., 2000.

For a linear least-squares fit of
∑x
i=1(ε10(bx/ic) − 0.449) log(i) for x = 1, 2,

3, ..., 2000, SSE=3075, R-square=0.9977, and RMSE=1.241. See Figure 70
for a plot of

∑x
i=1(ε10(bx/ic) − 0.449)σ0(i) for x = 1, 2, 3, ..., 2000. For

a linear least-squares fit of
∑x
i=1(ε10(bx/ic) − 0.449)σ0(i) for x = 1, 2, 3,

..., 2000, SSE=1.12e+4, R-square=0.9917, and RMSE=2.368. See Figure 71
for a plot of

∑x
i=1(ε10(bx/ic) − 0.449)σ1(i) for x = 1, 2, 3, ..., 2000. For a

quadratic least-squares fit of
∑x
i=1(ε10(bx/ic) − 0.449)σ1(i) for x = 1, 2, 3,

..., 2000, p1 = 0.01704 with a 95% confidence interval of (0.01704, 0.01705),
p2 = 0.01579 with a 95% confidence interval of (0.01202, 0.01956), p3 = 0.3726
with a 95% confidence interval of (−1.261, 2.006), SSE=3.073e+5, R-square=1,
and RMSE=12.41. (Note that the p1 and p2 values are almost equal.) See
Figure 72 for a plot of

∑x
i=1(ε10(bx/ic) − 0.449)σ2(i) for x = 1, 2, 3, ...,

2000. For a cubic least-squares fit of
∑x
i=1(ε10(bx/ic) − 0.449)σ2(i) for x = 1,

2, 3, ..., 2000, SSE=5.26e+9, R-square=1, and RMSE=1623. See Figure 73
for a plot of log(x!) and 23.9

∑x
i=1(ε10(bx/ic) − 0.449) log(i)σ0(i)/2 (superim-

posed on each other) for x = 1, 2, 3, ..., 2000. See Figure 74 for a plot of
1

x log(x)

∑x
i=1(ε10(bx/ic)− 0.449)Λ(i) for x = 2, 3, 4, ..., 2000.

See Figure 75 for a plot of
∑x
i=1 ε1(bx/ic) and

∑x
i=1 ε1(bx/ic)Λ(i) for x = 1, 2,

3, ..., 60. The peaks and valleys of the two curves fall roughly at the same places.
See Figure 76 for a plot of

∑x
i=1 ε1(bx/ic) for x = 1, 2, 3, ..., 200. For a linear

least-squares fit of
∑x
i=1 ε1(bx/ic) for x = 1, 2, 3, ..., 200, p1 = 0.3944 with a

95% confidence interval of (0.3902, 0.3986), p2 = 0.0452 with a 95% confidence
interval of (−0.4404, 0.5308), SSE=595.7, R-square=0.9943, and RMSE=1.735.
See Figure 77 for a plot of

∑x
i=1 ε1(bx/ic)Λ(i) for x = 1, 2, 3, ..., 200. For a linear

least-squares fit of
∑x
i=1 ε1(bx/ic)Λ(i) for x = 1, 2, 3, ..., 200, p1 = 0.3877 with

a 95% confidence interval of (0.3818, 0.3936), p2 = 0.1115 with a 95% confidence
interval of (−0.5763, 0.7992), SSE=1195, R-square=0.9882, and RMSE=2.457.
Let p1(n) and p2(n) denote the p1 and p2 values of the linear least-squares
fits of

∑x
i=1 ε1(bx/ic),

∑x
i=1 ε2(bx/ic),

∑x
i=1 ε3(bx/ic), ...,

∑x
i=1 ε40(bx/ic) for

respective x values up to 200, 400, 600, ..., 8000. See Figure 78 for a plot
of np1(n) for n = 1, 2, 3, ..., 40. For a linear least-squares fit of np1(n) for
n = 1, 2, 3, ..., 40, p1 = 0.4693 with a 95% confidence interval of (0.4684,
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0.4702), p2 = −0.1823 with a 95% confidence interval of (−0.2032, −0.1614),
SSE=0.03882, R-square=1, and RMSE=0.03196. See Figure 79 for a plot of
np2(n) for n = 1, 2, 3, ..., 40. For a linear least-squares fit of np2(n) for
n = 1, 2, 3, ..., 40, p1 = 0.02812 with a 95% confidence interval of (0.02778,
0.02846), p2 = 0.03972 with a 95% confidence interval of (0.03166, 0.04778),
SSE=0.005795, R-square=0.9986, and RMSE=0.01235.

For a linear least-squares fit of
∑x
i=1 ε20(bx/ic) for x = 1, 2, 3, ..., 4000, the

respective p1 and p2 values are 0.4588 and 0.02951. For a linear least-squares
fit of

∑x
i=1 ε40(bx/ic) for x = 1, 2, 3, ..., 8000, the respective p1 and p2 val-

ues are 0.4658 and 0.0292. See Figure 80 for a plot of −0.4588x − 0.02951 +∑x
i=1 ε20(bx/ic) (where each value is replicated twice) for x = 1, 2, 3, ..., 1000

and −0.4658x − 0.0292 +
∑x
i=1 ε40(bx/ic) for x = 1, 2, 3, ..., 2000 (superim-

posed on each other). The peaks and valleys of the two curves occur at the
same places and have almost the same magnitudes. See Figure 81 for a plot
of the difference in the two curves. Another way to compare such curves is to
use the smoothed p1 and p2 values given by the linear least-squares fits of the
np1 and np2 values (although the normalized value of

∑x
i=1 εn(bx/ic) may no

longer be zero). The smoothed p1(n) values (denoted by p′′1(n)) would then
be (0.4693n − 0.1823)/n and the smoothed p2(n) values (denoted by p′′2(n))
would then be (0.02812n + 0.03972)/n. See Figure 82 for the curves corre-
sponding to those given in Figure 80. See Figure 83 for the difference in the
two curves given by using the smoothed p1 and p2 values. This approach is
useful for determining the rate of growth of −p1(n)x− p2(n) +

∑x
i=1 εn(bx/ic)

due to small errors in the estimation of the slope. See Figure 84 for a plot of
−p′′1(10)x−p′′2(10)+

∑x
i=1 ε10(bx/ic) (where each value is replicated eight times)

for x = 1, 2, 3, ..., 105 and−p′′1(80)x−p′′2(80)+
∑x
i=1 ε80(bx/ic) for x = 1, 2, 3, ...,

840. See Figure 85 for a plot of the difference between these two curves. For a lin-
ear least-squares fit of the difference, p1 = −0.003741 with a 95% confidence in-
terval of (−0.003763, −0.003719), p2 = 0.005433 with a 95% confidence interval
of (−0.005125, 0.01599), SSE=5.082, R-square=0.9927, and RMSE=0.07788.
When the −p′′1(10)x−p′′2(10)+

∑x
i=1 ε10(bx/ic) values are replicated two, three,

four, five, six, seven, and eight times and the corresponding differences are
made, the respective p1 values of the linear least-squares fits of the differences
are 0.0003594, −0.000597, −0.001536, −0.002294, −0.002794, −0.003306, and
−0.003741. Denote these values by d(1), d(2), d(3), d(4), d(5), d(6), and d(7).
See Figure 86 for a plot

√
d(1)− d(n) versus log(n) for n = 1, 2, 3, 4, 5, 6,

and 7. For a quadratic least-squares fit of these quantities, p1 = −0.008382
with a 95% confidence interval of (−0.01046, −0.006301), p2 = 0.04871 with a
95% confidence interval of (0.04443, 0.05298), p3 = 0.0002991 with a 95% con-
fidence interval of (−0.001672, 0.00227), SSE=2.125e-6, R-square=0.9993, and
RMSE=0.000729.

See Figure 87 for a plot of the p1 values of the linear least-squares fits of∑x
i=1 ε1(bx/ic)Λ(i),

∑x
i=1 ε2(bx/ic)Λ(i),

∑x
i=1 ε3(bx/ic)Λ(i), ...,

∑x
i=1 ε40(bx/ic)Λ(i)

for respective x values up to 200, 400, 600, ..., 8000. Denote these p1 values
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by p′1(n), n = 1, 2, 3, ..., 40. See Figure 88 for a plot of np′1(n) for n = 1, 2,
3, ..., 40. For a linear least-squares fit of np′1(n) for n = 1, 2, 3, ..., 40, p1 =
0.4694 with a 95% confidence interval of (0.4685, 0.4703), p2 = −0.1883 with a
95% confidence interval of (−0.2099, −0.1666), SSE=0.04194, R-square=1, and
RMSE=0.03322. See Figure 89 for a plot of the corresponding p2 values (the
intercepts are erratic and appear to oscillate around zero).

See Figure 90 for a plot of −p′1(10)x +
∑x
i=1 ε10(bx/ic)Λ(i) and −p′1(20)x +∑x

i=1 ε20(bx/ic)Λ(i) for x = 1, 2, 3, ..., 100. The peaks and valleys of the two
curves occur at the same places and have about the same magnitudes. See Figure
91 for a plot of −p′1(20)x+

∑x
i=1 ε20(bx/ic)Λ(i)+p′1(10)x−

∑x
i=1 ε10(bx/ic)Λ(i),

−p′1(30)x +
∑x
i=1 ε30(bx/ic)Λ(i) + p′1(10)x −

∑x
i=1 ε10(bx/ic)Λ(i), −p′1(40)x +∑x

i=1 ε40(bx/ic)Λ(i)+p′1(10)x−
∑x
i=1 ε10(bx/ic)Λ(i), ..., −p′1(100)x+

∑x
i=1 ε100(bx/ic)Λ(i)+

p′1(10)x −
∑x
i=1 ε10(bx/ic)Λ(i) for x = 1, 2, 3, ..., 60. Denote the above values

at x = 22 by d(n), n = 1, 2, 3, ..., 9 respectively. See Figure 92 for plot of nd(n)
for n = 1, 2, 3, ..., 9. For a quadratic least-squares fit of nd(n), n = 1, 2, 3, ...,
9, p1 = −0.006309 with a 95% confidence interval of (−0.0009185, −0.003433),
p2 = −0.05533 with a 95% confidence interval of (−0.08481, −0.02584), p3 =
0.08285 with a 95% confidence interval of (0.01863, 0.1471), SSE=0.002553, R-
square=0.997, and RMSE=0.02063. Similar results valid for a larger range of x
values can be obtained by using smoothed p′1(n) values. Denote the smoothed
p′1(n) values (given by (0.4694n−0.1883)/n, n = 1, 2, 3, ...) by p′′1(n). See Figure
93 for a plot of −p′′1(20)x+

∑x
i=1 ε20(bx/ic)Λ(i)+p′′1(10)x−

∑x
i=1 ε10(bx/ic)Λ(i),

−p′′1(30)x +
∑x
i=1 ε30(bx/ic)Λ(i) + p′′1(10)x −

∑x
i=1 ε10(bx/ic)Λ(i), −p′′1(40)x +∑x

i=1 ε40(bx/ic)Λ(i)+p′′1(10)x−
∑x
i=1 ε10(bx/ic)Λ(i), ..., −p′′1(100)x+

∑x
i=1 ε100(bx/ic)Λ(i)+

p′′1(10)x −
∑x
i=1 ε10(bx/ic)Λ(i) for x = 1, 2, 3, ..., 1000. The respective p1 val-

ues of the linear least-squares fits of the above curves are −2.396e−5, 0.001556,
0.002892, 0.003458, 0.004141, 0.004583, 0.005121, 0.005499, and 0.005678. De-
note these values by d(n), n = 1, 2, 3, ..., 9. See Figure 94 for a plot of√
d(n)− d(1) versus log(n) for n = 1, 2, 3, ..., 9. For a quadratic least-

squares fit of these quantities, p1 = −0.01216 with a 95% confidence inter-
val of (−0.01583, −0.008491), p2 = 0.05993 with a 95% confidence interval of
(0.05123, 0.06863), p3 = 0.001261 with a 95% confidence interval of (−0.003448,
0.005971), SSE=2.419e−5, R-square=0.9947, and RMSE=0.002008.

See Figure 95 for a plot of
∑x
i=1 ε10(bx/ic)Λ(i) (where each value is replicated

eight times) for x = 1, 2, 3, ..., 105 and
∑x
i=1 ε80(bx/ic)Λ(i) for x = 1, 2, 3, ...,

840. See Figure 96 for a plot of the difference between these two curves. For
a linear least-squares fit of the difference, p1 = −0.4147 with a 95% confidence
interval of (−0.4154, −0.4141), p2 = 0.2906 with a 95% confidence interval of
(−0.007371, 0.5886), SSE=4049, R-square=0.9995, and RMSE=2.198. When
the

∑x
i=1 ε10(bx/ic)Λ(i) values are replicated two, three, four, five, six, seven,

and eight times and the corresponding differences are made, the respective p1
values of the linear least-squares fits of the differences are −0.2344, −0.3135,
−0.3523, −0.3779, −0.3935, −0.4048, and −0.4147. (See Figure 97 for a plot
of all these difference curves.) Denote these values by d(1), d(2), d(3), d(4),
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d(5), d(6), and d(7). See Figure 98 for a plot
√
−d(n) versus log(n) for n = 1,

2, 3, 4, 5, 6, and 7. For a quadratic least-squares fit of these quantities, p1 =
−0.02134 with a 95% confidence interval of (−0.0229, −0.01978), p2 = 0.1234
with a 95% confidence interval of (0.1202, 0.1266), p3 = 0.4843 with a 95%
confidence interval of (0.4828, 0.4857), SSE=1.192e-6, R-square=0.9999, and
RMSE=0.0005485.

9 Convolutions Involving Nontrivial Zeros of the
Riemann Zeta Function

Let θ1, θ2, θ3, .... denote the imaginary parts of the nontrivial zeros of the
zeta function. Let κ1(1), κ1(2), κ1(3), ..., denote log(θ1), log(θ2), log(θ3), ...
and let κm(x), m = 2, 3, 4, ..., denote these values and m − 1 values that
have been linearly interpolated between successive values. See Figure 99 for
a plot of

∑x
i=1 κ3(bx/ic) for x = 1, 2, 3, ..., 3000 (1001 zeta function zeros

from Andrew Odlyzko’s [9] tables were used). For a linear least-squares fit of∑x
i=1 κ3(bx/ic) for x = 1, 2, 3, ..., 3000, p1 = 2.894 with a 95% confidence in-

terval of (2.894, 2.894), p2 = −1.927 with a 95% confidence interval of (−1.943,
−1.91), SSE=163.6, R-square=1, and RMSE=0.2336. See Figure 100 for a
plot of

∑x
i=1(κ3(bx/ic) − 2.894) log(i) for x = 1, 2, 3, ..., 3000. For a linear

least-squares fit of
∑x
i=1(κ3(bx/ic) − 2.894) log(i) for x = 1, 2, 3, ..., 3000,

p1 = −0.4148 with a 95% confidence interval of (−0.4149, −0.4148), p2 = 2.761
with a 95% confidence interval of (2.708, 2.815), SSE=1649, R-square=1, and
RMSE=0.7416. See Figure 101 for a plot of

∑x
i=1(κ3(bx/ic)−2.894)σ0(i) for x =

1, 2, 3, ..., 3000. For a linear least-squares fit of
∑x
i=1(κ3(bx/ic) − 2.894)σ0(i)

for x = 1, 2, 3, ..., 3000, p1 = −0.4144 with a 95% confidence interval of
(−0.4145, −0.4143), p2 = 0.2982 with a 95% confidence interval of (0.1788,
0.4176), SSE=8335, R-square=1, and RMSE=1.667. See Figure 102 for a plot
of

∑x
i=1(κ3(bx/ic) − 2.894)σ1(i) for x = 1, 2, 3, ..., 3000. For a quadratic

least-squares fit of
∑x
i=1(κ3(bx/ic)− 2.894)σ1(i) for x = 1, 2, 3, ..., 3000, p1 =

−0.1477 with a 95% confidence interval of (−0.1477, −0.1477), p2 = −0.1478
with a 95% confidence interval of −0.1566, −0.1389), p3 = 0.08416 with a
95% confidence interval of (−5.657, 5.825), SSE=8.553e+6, R-square=1, and
RMSE=53.42. (Note that the p1 and p2 values are almost equal.) See Fig-
ure 103 for a plot of

∑x
i=1(κ3(bx/ic) − 2.894)σ2(i) for x = 1, 2, 3, ..., 3000.

For a cubic least-squares fit of
∑x
i=1(κ3(bx/ic) − 2.894)σ2(i) for x = 1, 2, 3,

..., 3000, SSE=2.891e+12, R-square=1, and RMSE=3.107e+4. See Figure 104
for a plot of − log(x!) and 2.65

∑x
i=1(κ3(bx/ic)− 2.894) log(i)σ0(i)/2 (superim-

posed on each other) for x = 1, 2, 3, ..., 3000. See Figure 105 for a plot of
1

x log(x)

∑x
i=1(κ3(bx/ic) − 2.894)Λ(i) for x = 2, 3, 4, ..., 3000. Other than giv-

ing more accurate results, the convolutions of κm(x) appear to have the same
properties as those of εm(x).

See Figure 106 for a plot of
∑x
i=1 κ10(bx/ic) and

∑x
i=1 κ10(bx/ic)Λ(i) (superim-
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posed on each other) for x = 1, 2, 3, ..., 20000 (20001 zeta function zeros were
used). For a linear least-squares fit of

∑x
i=1 κ10(bx/ic) for x = 1, 2, 3, ..., 20000,

p1 = 2.763 with a 95% confidence interval of (2.763, 2.763), p2 = −2.269 with
a 95% confidence interval of (−2.274, −2.263), SSE=902.8, R-square=1, and
RMSE=0.2125. For a linear least-squares fit of

∑x
i=1 κ10(bx/ic)Λ(i) for x = 1,

2, 3, ..., 20000, p1 = 2.762 with a 95% confidence interval of (2.762, 2.762),
p2 = −5.208 with a 95% confidence interval of (−6.866, −3.55), SSE=7.153e+7,
R-square=1, and RMSE=59.87. See Figure 107 for a plot of the p1 values of
the linear least-squares fits of

∑x
i=1 κ1(bx/ic),

∑x
i=1 κ2(bx/ic),

∑x
i=1 κ3(bx/ic),

...,
∑x
i=1 κ40(bx/ic) for x = 1, 2, 3, ..., 20000. Denote these p1 and p2 values

by p1(n) and p2(n), n = 1, 2, 3, ..., 40. See Figure 108 for a plot of np1(n)
for n = 1, 2, 3, ..., 40. For a linear least-squares fit of np1(n) for n = 1, 2, 3,
..., 40, p1 = 2.673 with a 95% confidence interval of (2.67, 2.676), p2 = 0.824
with a 95% confidence interval of (0.7509, 0.897), SSE=0.4766, R-square=1,
and RMSE=0.112. See Figure 109 for a plot of np2(n) for n = 1, 2, 3, ..., 40.
For a quadratic least-squares fit of np2(n) for n = 1, 2, 3, ..., 40, p1 = 0.01105
with a 95% confidence interval of (0.01016, 0.01194), p2 = −2.136 with a 95%
confidence interval of (−2.173, −2.098), p3 = −2.03 with a 95% confidence in-
terval of (−2.364, −1.695), SSE=4.042, R-square=0.9997, and RMSE=0.3305.

For a linear least-squares fit of
∑x
i=1 κ20(bx/ic) for x = 1, 2, 3, ..., 20000, the

respective p1 and p2 values are 2.719 and −2.013. For a linear least-squares
fit of

∑x
i=1 κ40(bx/ic) for x = 1, 2, 3, ..., 20000, the respective p1 and p2

values are 2.69 and −1.757. See Figure 110 for a plot of −2.719x + 2.013 +∑x
i=1 κ20(bx/ic) (where each value is replicated twice) for x = 1, 2, 3, ...,

1000 and −2.69x + 1.757 +
∑x
i=1 κ40(bx/ic) for x = 1, 2, 3, ..., 2000 (super-

imposed on each other). See Figure 111 for a plot of the difference in the two
curves. For a linear least-squares fit of the difference, p1 = −0.0004672 with
a 95% confidence interval of (−0.0004708, −0.0004636), p2 = 0.2681 with a
95% confidence interval of (0.264, 0.2723), SSE=4.395, R-square=0.9707, and
RMS=0.0469. The smoothed p1(n) values would be (2.673n + 0.824)/n and
the smoothed p2(n) values would be (0.01105n2 − 2.136n − 2.03)/n, n = 1, 2,
3, ..... Denote these values by p′′1(n) and p′′2(n), n = 1, 2, 3, .... See Figure
112 for the curves corresponding to those given in Figure 110. See Figure 113
for a plot of the difference in the two curves. For a linear least-squares fit
of the difference, p1 = 0.005533 with a 95% confidence interval of (0.005529,
0.005536), p2 = 0.2851 with a 95% confidence interval of (0.2809, 0.2892),
SSE=4.447, R-square=0.9998, and RMS=0.04718. See Figure 114 for a plot
of −p′′1(10)x − p′′2(10) +

∑x
i=1 κ10(bx/ic) (where each value is replicated eight

times) for x = 1, 2, 3, ..., 105 and −p′′1(80)x − p′′2(80) +
∑x
i=1 κ80(bx/ic) for

x = 1, 2, 3, ..., 840. See Figure 115 for a plot of the difference between these
two curves. For a linear least-squares fit of the difference, p1 = 0.01142 with a
95% confidence interval of (0.01141, 0.01144), p2 = 0.9804 with a 95% confidence
interval of (0.9732, 0.9877), SSE=2.399, R-square=0.9996, and RMSE=0.0535.
When the −p′′1(10)x−p′′2(10)+

∑x
i=1 κ10(bx/ic) values are replicated two, three,

four, five, six, seven, and eight times and the corresponding differences are

14



made, the respective p1 values of the linear least-squares fits of the differ-
ences are −0.0007004, 0.002501, 0.005195, 0.007298, 0.008966, 0.01031, and
0.01142. (See Figure 116 for a plot of these differences.) Denote these val-
ues by d(1), d(2), d(3), d(4), d(5), d(6), and d(7). See Figure 117 for a plot√
d(n)− d(1) versus log(n) for n = 1, 2, 3, 4, 5, 6, and 7. For a quadratic

least-squares fit of these quantities, p1 = −0.01688 with a 95% confidence in-
terval of (−0.02197, −0.01179), p2 = 0.08835 with a 95% confidence interval of
(0.0779, 0.09879), p3 = 0.0008116 with a 95% confidence interval of (−0.004008,
0.005631), SSE=1.271e-5, R-square=0.9986, and RMSE=0.001783. Note the
similarly of this curve to the corresponding curve for the ε sequence given in
Figure 86.

See Figure 118 for a plot of the p1 values of the linear least-squares fits of∑x
i=1 κ1(bx/ic)Λ(i),

∑x
i=1 κ2(bx/ic)Λ(i),

∑x
i=1 κ3(bx/ic)Λ(i), ...,

∑x
i=1 κ40(bx/ic)Λ(i)

for x = 1, 2, 3, ..., 20000. Denote these p1 and p2 values by p′1(n) and p′2(n),
n = 1, 2, 3, ..., 40. See Figure 119 for a plot of np′1(n) for n = 1, 2, 3, ..., 40.
For a linear least-squares fit of np′1(n) for n = 1, 2, 3, ..., 40, p1 = 2.672 with
a 95% confidence interval of (2.669, 2.675), p2 = 0.8237 with a 95% confidence
interval of (0.7509, 0.8965), SSE=0.4732, R-square=1, and RMSE=0.1116. See
Figure 120 for a plot of np′2(n) for n = 1, 2, 3, ..., 40. For a quadratic least-
squares fit of np′2(n) for n = 1, 2, 3, ..., 40, p1 = 0.03749 with a 95% confidence
interval of (0.03416, 0.04082), p2 = −4.593 with a 95% confidence interval
of (−4.734, −4.452), p3 = −8.21 with a 95% confidence interval of (−9.462,
−6.958), SSE=56.74, R-square=0.9989, and RMSE=1.238.

See Figure 121 for a plot of −p′1(10)x − p′2(10) +
∑x
i=1 κ10(bx/ic)Λ(i) and

−p′1(20)x−p′2(20)+
∑x
i=1 κ20(bx/ic)Λ(i) (superimposed on each other) for x = 1,

2, 3, ..., 100. The peaks and valleys of the two curves occur at the same places
and have almost the same magnitudes. See Figure 122 for a plot of −p′1(20)x−
p′2(20)+

∑x
i=1 κ20(bx/ic)Λ(i)+p′1(10)x+p′2(10)−

∑x
i=1 κ10(bx/ic)Λ(i) for x = 1,

2, 3, ..., 1000. See Figure 123 for a plot of−p′1(20)x−p′2(20)+
∑x
i=1 κ20(bx/ic)Λ(i)+

p′1(10)x+p′2(10)−
∑x
i=1 κ10(bx/ic)Λ(i), −p′1(30)x−p′2(30)+

∑x
i=1 κ30(bx/ic)Λ(i)+

p′1(10)x+p′2(10)−
∑x
i=1 κ10(bx/ic)Λ(i), −p′1(40)x−p′2(40)+

∑x
i=1 κ40(bx/ic)Λ(i)+

p′1(10)x+p′2(10)−
∑x
i=1 κ10(bx/ic)Λ(i), ..., −p′1(110)x−p′2(110)+

∑x
i=1 κ110(bx/ic)Λ(i)+

p′1(10)x + p′2(10) −
∑x
i=1 κ10(bx/ic)Λ(i) for x = 1, 2, 3, ..., 100. The values of

these curves at x = 5 are−0.7718, −1.2023, −1.5266, −1.767, −1.9679, −2.1416,
−2.2691, −2.4135, −2.5138, and −2.625. Denote these values by d(n), n = 1,
2, 3, ..., 10. See Figure 124 for a plot of nd(n) for n = 1, 2, 3, ..., 10. For a
quadratic least-squares fit of nd(n) for n = 1, 2, 3, ..., 10, p1 = −0.1087 with a
95% confidence interval of (−0.126, −0.09139), p2 = −1.677 with a 95% confi-
dence interval of (−1.872, −1.482), p3 = 1.249 with a 95% confidence interval of
(0.7822, 1.716), SSE=0.1974, R-square=0.9997, and RMSE=0.1679. Note the
similarity of this curve to the corresponding curve for the ε sequence given in
Figure 92.

The smoothed p′1(n) values would be (2.672n + 0.8237)/n and the smoothed
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p′2(n) values would be (0.03749n2 − 4.593n − 8.21)/n, n = 1, 2, 3, ..... Denote
these values by p′′1(n) and p′′2(n), n = 1, 2, 3, .... See Figure 125 for a plot of
−p′′1(20)x−p′′2(20)+

∑x
i=1 κ20(bx/ic)Λ(i)+p′′1(10)x+p′′2(10)−

∑x
i=1 κ10(bx/ic)Λ(i),

−p′′1(30)x−p′′2(30)+
∑x
i=1 κ30(bx/ic)Λ(i)+p′′1(10)x+p′′2(10)−

∑x
i=1 κ10(bx/ic)Λ(i),

−p′′1(40)x−p′′2(40)+
∑x
i=1 κ40(bx/ic)Λ(i)+p′′1(10)x+p′′2(10)−

∑x
i=1 κ10(bx/ic)Λ(i),

..., and−p′′1(110)x−p′′2(110)+
∑x
i=1 κ110(bx/ic)Λ(i)+p′′1(10)x+p′′2(10)−

∑x
i=1 κ10(bx/ic)Λ(i)

for x = 1, 2, 3, ..., 1000. The endpoints of these curves (at x = 1000) are
−2.4217, −6.3512, −9.3307, −11.5999, −13.3032, −14.6796, −15.7949, −16.7158,
−17.5157, and −18.1906. Denote these values by d(n), d = 1, 2, 3, ..., 10. See
Figure 126 for a plot of

√
−d(n) versus log(n) for n = 1, 2, 3, ..., 10. For a

quadratic least-squares fit of these quantities, p1 = −0.1618 with a 95% confi-
dence interval of (−0.1853, −0.1382), p2 = 1.56 with a 95% confidence interval
of (1.501, 1.619), p3 = 1.544 with a 95% confidence interval of (1.51, 1.578),
SSE=0.001596, R-square=0.9998, and RMSE=0.0151. Note the similarity of
this curve to the corresponding curve for the ε sequence given in Figure 94.

See Figure 127 for a plot of
∑x
i=1 κ10(bx/ic)Λ(i) (where each value is replicated

eight times) for x = 1, 2, 3, ..., 105 and
∑x
i=1 κ80(bx/ic)Λ(i) for x = 1, 2, 3, ...,

840. See Figure 128 for a plot of the difference between these two curves. For
a linear least-squares fit of the difference, p1 = −2.329 with a 95% confidence
interval of (−2.333, −2.326), p2 = 1.695 with a 95% confidence interval of
(0.07374, 3.317), SSE=1.199e+5, R-square=0.9996, and RMSE=11.96. When
the

∑x
i=1 κ10(bx/ic)Λ(i) values are replicated two, three, four, five, six, seven,

and eight times and the corresponding differences are made, the respective p1
values of the linear least-squares fits of the differences are−1.338, −1.78, −1.994,
−2.132, −2.216, −2.277, and −2.329. (See Figure 129 for a plot of all these
difference curves.) Denote these values by d(1), d(2), d(3), d(4), d(5), d(6), and
d(7). See Figure 130 for a plot

√
−d(n) versus log(n) for n = 1, 2, 3, 4, 5,

6, and 7. For a quadratic least-squares fit of these quantities, p1 = −0.05185
with a 95% confidence interval of (−0.05533, −0.04838), p2 = 0.29 with a 95%
confidence interval of (0.2828, 0.2971), p3 = 1.157 with a 95% confidence interval
of (1.154, 1.16), SSE=5.933e−6, R-square=0.9999, and RMSE=0.001218. Note
the similarity of this curve to the corresponding curve for the ε sequence given
in Figure 98.

10 A Common Function

For a linear least-squares fit of
∑x
i=1 κ20(bx/ic)Λ(i) for x = 1, 2, 3, ..., 40000

(where 2001 zeta function zeros are used), p1 = 2.719 and p2 = −14.28.
For a linear least-squares fit of

∑x
i=1 ε20(bx/ic)Λ(i) for x = 1, 2, 3, ..., 4000

(where 201 limits are used), p1 = 0.4585 and p2 = −0.09845. See Figure 131
for a plot of −2.719x +

∑x
i=1 κ20(bx/ic)Λ(i) and (2.719/0.4585)(−0.4585x +∑x

i=1 ε20(bx/ic)Λ(i)) for x = 1, 2, 3, ..., 99 (5 limits are used). The peaks
and valleys of the two curves occur at the same places and have roughly the
same magnitudes. Only 201 approximate limits accurate to about four (or
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possibly more) decimal places were used for the ε convolutions. This may ac-
count for the erratic y-intercepts in some of the linear least-squares fits. Even
when 1001 zeta function zeros are used, the y-intercepts in some of the linear
least-squares fits of the κ convolutions are erratic. For a linear least-squares
fit of

∑x
i=1 ε20(bx/ic)Λ(i) for x = 1, 2, 3, ..., 2000 where 101 of the limits

corresponding to the imaginary parts of the Dirichlet character modulo 11 are
used, p1 = −1.704 and p2 = 1.617. See Figure 132 for a plot of −2.719x +∑x
i=1 κ20(bx/ic)Λ(i) and (2.719/ − 1.704)(1.704x +

∑x
i=1 ε20(bx/ic)Λ(i)) for

x = 1, 2, 3, ..., 99). The peaks and valleys of the two curves occur at the
same places and have almost the same magnitudes.

If principal Dirichlet characters are used, exact values for the ε sequence can
be computed. For example, the ε sequence is a repeating pattern of 1

2 , 1, 3
2 ,

2, 5
2 , 5

2 , 2, 3
2 , 1, 1

2 , and 0 for the principal Dirichlet character modulo 11 and
the ε sequence is a repeating pattern of 1

2 , 1, 3
2 , 2, 5

2 , 3, 3, 5
2 , 2, 3

2 , 1, 1
2 , and

0 for the principal Dirichlet character modulo 13. Let m = 2, 3, 4, .... and let

r(w) = w − bw/mcm for w = 1, 2, 3, .... Let q(w) equal r(w)
2 if r(w) ≤ bm/2c

or m−r(w)
2 if r(w) > bm/2c.

Conjecture 5. As n→∞, the real components of 1
n

∑x
i=1(ybx/ic(n)−zbx/ic(n)+

b(n−1)/2c/n)G(i, χ), x = n, 2n, 3n, ..., where χ is the principal Dirichlet char-
acter modulo m approach q(1), q(2), q(3), ....

For such an ε sequence, let p′1(n) denote the p1 values of the linear least squares
fits of

∑x
i=1 εn(bx/ic)Λ(i) for x = 1, 2, 3, ..., x′ and n = 1, 2, 3, .... Similarly, let

p1(n) denote the p1 values of the linear least squares fits of
∑x
i=1 κn(bx/ic)Λ(i)

for x = 1, 2, 3, ..., x′ and n = 1, 2, 3, ....

Conjecture 6. As n → ∞ and x′ → ∞, −p1(n)x +
∑x
i=1 κn(bx/ic)Λ(i) −

p1(n)
p′1(n)

(−p′1(n)x+
∑x
i=1 εn(bx/ic)Λ(i)) goes to zero for x = 1, 2, 3, ....

Of course, the number of limits used cannot remain fixed as n → ∞ and x′ →
∞. For the linear least-squares fit of

∑x
i=1 εn(bx/ic)Λ(i) for x = 1, 2, 3, ...,

1999999, n = 50000, and where 40 elements of the ε sequence for the principal
Dirichlet character modulo 13 are used, the p1 and p2 values are 0.5001 and 5.844
respectively. For the linear least-squares fit of

∑x
i=1 κn(bx/ic)Λ(i) for x = 1, 2,

3, ..., 1999999, n = 50000, and where 40 nontrivial zeta function zeros are used,
the p1 and p2 values are 2.649 and 41.15 respectively. See Figure 133 for a plot
of −2.649x +

∑x
i=1 κn(bx/ic)Λ(i) and 2.649

0.5001 (−0.5001x +
∑x
i=1 εn(bx/ic)Λ(i))

(superimposed on each other) for x = 1, 2, 3, ..., 100. For x up to 2000, the
maximum difference between the two curves is 0.1793. The curves are expected
to overlap since only two limits are used. Note the similarity of the curves to
the above curves where five limits are used.
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11 Dirichlet Products

Upper bounds of convolutions can also be found when Dirichlet products are
used. See Figure 134 for a plot of

∑
i|x κn(bx/ic) where n = 1 for x = 1, 2,

3, ..., 20000. The plot consists of about 30 different slowly increasing ”curves”
with gaps in them. (Note that Möbius inversion can be used to regenerate the
κ values from these curves.) Curve #0 (numbering from the bottom) consists
of a single element at x = 1 and having a value of log(θ1). Curve #1 consists of
elements at x = 2, 3, 5, ... (the primes) and having values of log(θ1) + log(θx).
Curve #2 consists of elements at x = 22, 32, 52, .... Curve #3 consists of ele-
ments at x = 23, 33, 53, ... and x values that are the product of two distinct
primes. Curve #4 consists of elements at x = 24, 34, 54, .... Curve #5 consists of
elements at x = 25, 35, 55, ... and x values that are the product of the square of
a prime and a different prime. In general, Curve #k consists of at least elements
at x = 2k, 3k, 5k, .... See Figure 135 for a plot of log(x− 1)/1.45 and the nor-
malized curve starting at x = 2 for x = 2, 3, 4, ..., 20000. Gaps in the curve are
filled by duplicating the first value at the beginning of the gap. The curve is then
normalized by subtracting 5.694206 (the value at x = 2) from each element of
the curve. The plot shows that the normalized curve is increasing more rapidly
than log(x − 1)/1.45. The curves with larger elements are almost quadratic.
See Figure 136 for a plot of the normalized curve starting at x = 2520 (having
an initial value of 242.2441). For a quadratic least squares fit of the curve for
x = 2520, 2521, 2522, ..., 19992, p1 = −1.104e−7 with a 95% confidence interval
of (−1.111e−7, −1.097e−7), p2 = 0.004475 with a 95% confidence interval of
(0.004459, 0.004492), p3 = −8.94 with a 95% confidence interval of (−9.023,
−8.857), SSE=2.124e+4, R-square=0.9888, and RMSE=1.103. Let b(n, x′) de-
note the maximum of

∑
i|x κn(bx/ic) for x = 1, 2, 3, ..., x′. See Figure 137 for a

plot of nb(n, x′) for n = 1, 2, 3, ..., 20 and x′ = 5000. For a quadratic least fit of
this quantity, p1 = −1.119 with a 95% confidence interval of (−1.278, −0.9597),
p2 = 192.5 with a 95% confidence interval of (189, 195.9), p3 = 87.18 with
a 95% confidence interval of (71.48, 102.9), SSE=1702, R-square=0.9999, and
RMSE=10.01. For the corresponding plot where x′ = 10000, p1 = −1.613 with a
95% confidence interval of (−1.843, −1.383), p2 = 268.9 with a 95% confidence
interval of (264, 273.9), p3 = 122.2 with a 95% confidence interval of (99.46,
144.9), SSE=3558, R-square=0.9999, and RMSE=14.47. For the corresponding
plot where x′ = 15000, p1 = −1.901 with a 95% confidence interval of (−2.165,
−1.638), p2 = 311.6 with a 95% confidence interval of (305.9, 317.3), p3 = 140.3
with a 95% confidence interval of (114.3, 166.2), SSE=4659, R-square=0.9999,
and RMSE=16.55. For the corresponding plot where x′ = 20000, p1 = −2.172
with a 95% confidence interval of (−2.472, −1.872), p2 = 353.3 with a 95%
confidence interval of (346.8, 359.8), p3 = 158.4 with a 95% confidence interval
of (128.9, 188), SSE=6022, R-square=0.9999, and RMSE=18.82. See Figure
138 for a plot of all four of these curves.

See Figure 139 for a plot of
∑
i|x εn(bx/ic) where n = 1 and the epsilon sequence

corresponds to the principal Dirichlet character modulo 3 for x = 1, 2, 3, ...,
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1000. The plot consists of 16 curves starting at multiples of 1/2 and having
slopes of zero. Curve #0 consists of elements at x = 30, 31, 32, ... and having
values of 1

2 . Curve #1 consists of elements at x = 2, 5, 7, ... (the primes exclud-
ing 3) and elements at x = 3k2, 3k5, 3k7, ..., where k = 1, 2, 3, .... Curve #2
consists of elements at x = 3k22, 3k52, 3k72, ... where k = 0, 1, 2, .... Curve #3
consists of elements at x = 3k23, 3k53, 3k73, ... and elements at x where x is
the product of 3k and two distinct primes (excluding 3), ..., where k = 0, 1, 2, ....

See Figure 140 for a plot of
∑
i|x κn(bx/ic)Λ(i) where n = 1 for x = 1, 2, 3,

..., 5000. See Figure 141 for a plot of
∑
i|x κn(bx/ic)Λ(i)− log(θ1) log(x) where

n = 1 for x = 1, 2, 3, ..., 5000.

Conjecture 7. log(θ1) log(x) is less than or equal to
∑
i|x κn(bx/ic)Λ(i).

(Numbering from the bottom, the first four major curves in Figure 141 oc-
cur at x where x equals 2 times the primes other than 2, where x equals 3
times the primes other than 3, where x equals 22 times the primes other than
2, and where x equals 5 times the primes other than 5. Two other curves
that intersect these curves occur at x where x equals the square of a prime
and where x equals the cube of a prime.) Let c(n, x′) denote the maximum of∑
i|x κn(bx/ic)Λ(i) − log(θ1) log(x) for x = 1, 2, 3, ..., x′. See Figure 142 for

a plot of nc(n, x′) for n = 1, 2, 3, ..., 40 and x′ = 5000. For a quadratic least
fit of this quantity, p1 = −0.1564 with a 95% confidence interval of (−0.1708,
−0.142), p2 = 19.9 with a 95% confidence interval of (19.29, 20.51), p3 = 35.58
with a 95% confidence interval of (30.16, 41.01), SSE=1064, R-square=0.9989,
and RMSE=5.363. For the corresponding plot where x′ = 10000, p1 = −0.1828
with a 95% confidence interval of (−0.1991, −0.1664), p2 = 25.94 with a 95%
confidence interval of (25.25, 26.64), p3 = 39.96 with a 95% confidence inter-
val of (33.8, 46.12), SSE=1371, R-square=0.9993, and RMSE=6.088. For the
corresponding plot where x′ = 15000, p1 = −0.1989 with a 95% confidence
interval of (−0.216, −0.1817), p2 = 29.85 with a 95% confidence interval of
(29.12, 30.58), p3 = 42.25 with a 95% confidence interval of (35.79, 48.71),
SSE=1510, R-square=0.9994, and RMSE=6.389. For the corresponding plot
where x′ = 20000, p1 = −0.2088 with a 95% confidence interval of (−0.2268,
−0.1908), p2 = 32.59 with a 95% confidence interval of (31.83, 33.35), p3 = 43.97
with a 95% confidence interval of (37.22, 50.72), SSE=1648, R-square=0.9995,
and RMSE=6.673. See Figure 143 for a plot of all four of these curves. See
Figure 144 for a plot of

∑
i|x κn(bx/ic)Λ(i)/

∑
i|x εn(bx/ic)Λ(i) where n = 1 and

the ε sequence corresponds to the principal Dirichlet character modulo 33 for
x = 1, 2, 3, ..., 1000.

∑
i|x κn(bx/ic)Λ(i)/

∑
i|x εn(bx/ic)Λ(i) equals 2 log(θ1)

when x is prime. By choosing the modulus large enough for larger x′ values,
the ratios become less than or equal to 2 log(θ1). For example, for x′ = 1000,
2000, 3000, ..., 10000, the ratios are less than or equal to 2 log(θ1) for moduli of
33, 61, 61, 85, 85, 85, 85, 91, 90, and 102 respectively.
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See Figure 145 for a plot of
∑
i|x ε1(bx/ic)Λ(i) where the ε sequence corresponds

to the principal Dirichlet character modulo 5 for x = 1, 2, 3, ..., 20000. When 5
divides x,

∑
i|x ε1(bx/ic)Λ(i) equals 0.804719 or 1.609438. Let ε(n,m) denote the

ε sequence corresponding to the principal Dirichlet character modulo m. See
Figure 146 for a plot of 2

∑
i|x ε(1,m)(bx/ic)Λ(i) − log(x), m does not divide x

for m = 5 and x = 1, 2, 3, ..., 20000 (the values have been set to zero when 5
divides x).

Conjecture 8. log(x) is less than or equal to 2
∑
i|x ε(1,m)(bx/ic)Λ(i), m does

not divide x. If m = 2 or 3 and m does not divide x, 2
∑
i|x ε(1,m)(bx/ic)Λ(i) =

log(x).

Conjecture 9. If m is odd and greater than 3, m−3
2 log(x) is greater than or

equal to 2
∑
i|x ε(1,m)(bx/ic)Λ(i)− log(x), m does not divide x.

(Numbering from the bottom, Curve #0 in Figure 146 occurs at x = 2, 3,
7, ... [the primes other than 5] and the values are 0.0. Curve #1 occurs at
x = 22 and x = 222, 223, 227, ... and the values are 0.6931472. Curve #2
occurs at x = 32 and x = 322, 323, 327, ... and the values are 1.098612.
Curve #3 occurs at x = 42 and x = 422, 423, 427, ... and the values are
1.386294. Curve #4 occurs at x = 6, x = 62, and x equals 6 or 62 times
2, 3, 7, .... and the values are 1.791759.) See Figure 147 for a plot of the
maxima of 2

∑
i|x ε(1,m)(bx/ic)Λ(i) − log(x) for x = 1, 2, 3, ..., 20000 and

m = 4, 5, 6, ..., 103, m does not divide x. For a linear least-squares fit
of the maxima, p1 = 4.793 with a 95% confidence interval of (4.763, 4.822),
p2 = −12.17 with a 95% confidence interval of (−13.96, −10.37), SSE=1808,
R-square=0.9991, and RMSE=4.296. The maxima usually do not occur at
x = 20000, so a linear increase of the maxima is still consistent with Con-
jecture 9. See Figure 148 for a plot of the least multiples (in increments of
0.1) of

∑
i|x κ1(bx/ic)Λ(i) − log(θ1) log(x) that are greater than or equal to

2
∑
i|x ε(1,m)(bx/ic)Λ(i) − log(x) for x = 1, 2, 3, ..., 20000 and m = 4, 5, 6, ...,

103, m does not divide x. The multiples resemble a step function.

Note that inverses of the κ convolutions can be computed at x = 2, 4, 6,
.... to give κn(1), κn(2), κn(3), .... See Figure 149 for a plot of the inverses
of

∑
i|x κ1(bx/ic)Λ(i) for x = 1, 2, 3, ..., 100. For a linear least-squares fit

of the inverses, p1 = 0.000397 and p2 = 2.648 (2.648 ≈ log(14.134725) and
0.000397 ≈ (log(21.022040)− log(14.134725))/999).

See Figure 150 for a plot of
∑
i|x δn(bx/ic)Λ(i) and − log(x) where n = 1 for

x = 1, 2, 3, ..., 999 (1000 limits accurate to about 6 decimal places were used).
Positive values occur only when x has exactly two prime factors (not necessarily
distinct). See Figure 151 for a plot of

∑
i|x δn(bx/ic)Λ(i) and − log(x) where

n = 2 for x = 1, 2, 3, ..., 1999. Positive values occur only when x has at least
three distinct prime factors.

20



12 Materials and Methods

A C program for computing the ε, κ, and δ convolutions is at the following link.
“Include” files are at the subsequent links. The 201 limits for the ε convolutions
are included.
“www.darrellcox.website/test1g.htm”
“www.darrellcox.website/zeros1.htm”
“www.darrellcox.website/table2g.htm”
“www.darrellcox.website/output2.htm”
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