/*****************************************************************************/
/* */
/* COUNT PAIRS OF CONSECUTIVE ROOTS OF THE CONGRUENCE X**((P-1)/N)=Y(MOD P) */
/* 06/01/07 (dkc) */
/* */
/* This C program tests propositions for n=8. */
/* */
/*****************************************************************************/
#include <stdio.h>
#include <math.h>
#include "input.h"
unsigned int croots(unsigned int *input, unsigned int index, unsigned int n,
unsigned int *output);
void res64_32(unsigned int exp0, unsigned int exp1, unsigned int q0,
unsigned int q1, unsigned int *output, unsigned int base);
unsigned int r[100000];
unsigned int U[2];
int main () {
unsigned int n=8; // n value
unsigned int h,i,sum,p,p1,pn,flag0,flag1,temp,count;
unsigned int s[14];
FILE *Outfp;
Outfp = fopen("out8.dat","w");
count=0;
for (h=0; h<insize; h++) {
p=input[2*h]; // load p
if (p>40000) // reduce execution time
break;
i=croots(input, h, n, s); // count consecutive roots of congruences
if (i==0) // continue if n does not divide p-1
continue;
if (i==2) {
printf(" error: bad primitive root \n");
break;
}
printf(" p=%d ",input[2*h]);
/***************************************************/
/* check if the sum of S[i] is equal to (p-1)/n-1 */
/***************************************************/
sum=0;
for (i=0; i<n; i++) {
sum=sum+s[i];
printf(" %d ",s[i]);
}
printf("\n");
p1=p-1;
pn=p1/n;
if (sum!=pn-1) {
printf(" error: incorrect sum \n");
break;
}
/**********************************/
/* check if s[1]=s[3]=s[5]=s[7] */
/**********************************/
flag0=0;
if ((s[0]==s[2])&&(s[2]==s[4])&&(s[4]==s[6])) {
if ((s[1]==s[3])&&(s[3]==s[5])&&(s[5]==s[7]))
flag0=1;
}
/***********************************/
/* check if (p-1)/n is a square */
/***********************************/
flag1=0;
temp=(unsigned int)(sqrt((double)pn)+0.01);
if (temp*temp==pn)
flag1=1;
/****************************************************************/
/* check if (p-1)/n is an odd square when s[1]=s[3]=s[5]=s[7] */
/****************************************************************/
if (flag0==1) {
fprintf(Outfp," p=%d ",p);
for (i=0; i<n; i++)
fprintf(Outfp," %d ",s[i]);
fprintf(Outfp,"\n");
if ((flag1==0)||((pn/2)*2==pn)) {
fprintf(Outfp,"p=%d, error: (p-1)/n is not an odd square \n",p);
printf(" error: (p-1)/n is not an odd square \n");
}
}
/*****************************************************************************/
/* check if s[1]=s[3]=s[5]=s[7] when pn is odd square and 2**(2*r)=1(mod p) */
/*****************************************************************************/
if (flag1==1) {
if ((pn/2)*2!=pn) {
res64_32(0, pn*2, 0, p, U, 2);
if ((U[0]==0)&&(U[1]==1)) {
if (flag0==0) {
fprintf(Outfp,"p=%d, error: unequal s values \n",p);
printf(" error: unequal s values \n");
}
}
}
}
/******************************************************************/
/* check if s[1]=s[3] when 2**(2*r)=1(mod p) and (p-1)/n is odd */
/******************************************************************/
if ((pn/2)*2!=pn) {
res64_32(0, pn*2, 0, p, U, 2);
if ((U[0]==0)&&(U[1]==1)) {
if ((s[0]!=s[2])||(s[4]!=s[6])) {
fprintf(Outfp,"p=%d, error: unequal s values \n",p);
printf(" error: unequal s values \n");
}
}
}
/******************************************************************************/
/* check if s[1]=s[3]=s[5]=s[7] when 2**(2*r)<>1(mod p) and (p-1)/n is even */
/******************************************************************************/
if ((pn/2)*2==pn) {
res64_32(0, pn*2, 0, p, U, 2);
if ((U[0]!=0)||(U[1]!=1)) {
if ((s[0]!=s[2])||(s[4]!=s[6])||(s[2]!=s[4])) {
fprintf(Outfp,"p=%d, error: unequal s values \n",p);
printf(" error: unequal s values \n");
}
}
/*****************************************************************************/
/* check if s[1]-s[3]=s[5]-s[7] when 2**(2*r)=1(mod p) and (p-1)/n is even */
/*****************************************************************************/
else {
if ((s[0]-s[2])!=(s[4]-s[6])) {
fprintf(Outfp,"p=%d, error: unequal differences \n",p);
printf(" error: unequal differences \n");
}
}
}
}
fclose(Outfp);
return(0);
}